DOI QR코드

DOI QR Code

5G의 이질적인 환경에서 사용자 프라이버시를 효율적으로 보호하기 위한 다중 그룹 정보 관리 기법

Multi-group Information Management Techniques to efficiently Protect User Privacy in Heterogeneous Environments of 5G

  • 김겸순 (충북대학교 수학과) ;
  • 연용호 (목원대학교 교양교육원) ;
  • 정윤수 (목원대학교 정보통신융합공학부)
  • Kim, Kyoum-Sun (Department of Mathematics, Chungbuk National University) ;
  • Yon, Yong-Ho (College of Liberal Education, Mokwon University) ;
  • Jeong, Yoon-Su (Division of Information and Communication Convergence Engineering, Mokwon University)
  • 투고 : 2019.05.14
  • 심사 : 2019.07.20
  • 발행 : 2019.07.29

초록

최근 차세대 무선통신인 5G가 일상 생활에서 실용화되면서 다양한 분야에서 많은 변화가 이루어지고 있다. 그러나, 5G의 향상된 속도와 지연 시간이 개선되었지만 여전히 사용자 보안에 대한 개선이 요구되어 지고 있다. 본 논문에서는 5G의 이질적인 환경에서 사용자의 프라이버시 정보를 효율적으로 보호하기 위한 다중 그룹의 정보 관리 기법을 제안한다. 제안 기법은 서로 다른 이기종의 장치에서 생성되는 사용자의 프라이버시 정보를 서로 다른 그룹에서 연계 처리할 수 있도록 연계 정보를 클러스터링하여 분산 관리할 수 있도록 하는 것이 목적이다. 제안 기법은 주기적으로 사용자의 프라이버시 정보를 동기화하여 사용자별 프라이버시 정보를 가상의 공간에서 독립적으로 처리한다.

With the recent commercialization of the next generation of wireless 5G in everyday life, many changes have been made to organizations, industries and businesses of various sizes in various fields. However, although the improved speed and latency of 5G has improved, improvements in encryption, authentication and privacy are still required. In this paper, multiple groups of information management techniques are proposed to efficiently protect users' privacy in the heterogeneous environment of 5G. The proposed technique aims to allow distributed management of users' privacy links by clouding the privacy information generated by different heterogeneous devices to efficiently interface with different groups. Suggestion techniques process user-specific privacy information independently in a virtual space so that users can periodically synchronize their privacy information.

키워드

JKOHBZ_2019_v9n7_1_f0001.png 이미지

Fig. 1. Heterogeneous Networks

JKOHBZ_2019_v9n7_1_f0002.png 이미지

Fig. 2. Process Time

JKOHBZ_2019_v9n7_1_f0003.png 이미지

Fig. 3. Efficiency of Server

JKOHBZ_2019_v9n7_1_f0004.png 이미지

Fig. 4. Packet Loss Rate

Table 1. Security Challenges in 5G Technologies

JKOHBZ_2019_v9n7_1_t0001.png 이미지

Table 2. Simulation Parameters for Performance Evaluation

JKOHBZ_2019_v9n7_1_t0002.png 이미지

참고문헌

  1. M. Agiwal, A. Roy & N. Saxena. (2016). Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Communications Surveys Tutorials, 18(3), 1617-1655. https://doi.org/10.1109/COMST.2016.2532458
  2. N. Alliance. (2015). NGMN 5G white paper. Next Generation Mobile Networks, White paper.
  3. Z. Yan, P. Zhang & A. V. Vasilakos. (2016). A security and trust framework for virtualized networks and software-defined networking. Security and Communication Networks, 9(16), 3059-3069. https://doi.org/10.1002/sec.1243
  4. L. T. Sorensen, S. Khajuria & K. E. Skouby. (2015). 2015 IEEE 81st Vehicular Technology Conference(VTC Spring), 1-4.
  5. F. Kemmer, C. Reich, M. Knahl & N. Clarke. (2016). Software defined privacy. 2016 IEEE International conference on Cloud Engineering Workshop(IC2EW), 25-29.
  6. D. J. Kim, Y. J. Jung & H. Y. Lee. (2018). Trends and Prospects for 5G Standardization. 2018, TTA Special Report, 1-8. http://www.tta.or.kr/data/reportDown.jsp?news_num=5347
  7. X. Cui, P. Zhu, X. Yang, K. Li & C. Ji. (2014). Optimized big data K-means clustering using MapReduce. Journal of Supercomputing, 70(3), 1249-1259. https://doi.org/10.1007/s11227-014-1225-7
  8. B. Bahmani, B. Moseley, A. Vattani, R. Kumar & S. Vassivitskii. (2012). Scalable k-means++. Proceedings of the VLDB Endowment, 5(7), 622-633. https://doi.org/10.14778/2180912.2180915
  9. Y. H. Kim, K S. Shim, M. S. Kim & J. S. Lee. (2014). DBCURE-MR: an efficient density-based clustering algorithm for large data using MapReduce. Journal of Information Systems, 42, 15-35.
  10. X. Cui, J. S. Charles & T. Potok. (2013). GPU enhanced parallel computing for large scale data clustering. Journal of Future Generation Computer Systems, 29(7), 1736-1741. https://doi.org/10.1016/j.future.2012.07.009
  11. J. Cao, M. Ma, Y. Fu, H. Li & Y. Zhang. (2019). CPPHA: Capability-based Privacy-Protection Handover Authentication Mechanism for SDN-based 5G HetNets. IEEE Transactions on Dependable and Secure Computing, 1-1.
  12. Y. Deng, L. Wang, K. K. Wong, A. Nallanathan, M. Elkashlan & S. Lambotharan. (2015). Safeguarding massive MIMO aided hetnets using physical layer security. Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing(pp. 1-5).
  13. X. Duan & X. Wang. (2016). Fast authentication in 5G HetNet through SDN enabled weighted secure-context-information transfer. Proceedings of the 2016 IEEE International Conference on Communications (ICC) (pp. 1-6).
  14. T. Ma, F. Hu & M. Ma. (2017). Fast and efficient physical layer authentication for 5G HetNet handover. Proceedings of the 2017 27th International Telecommunication Networks and Applications Conference (ITNAC)(pp. 1-3).
  15. S. Sheikhzadeh. M. R. Javan & N. Mokari. (2017). Radio resource allocation for physical-layer security in OFDMA based HetNets with unknown mode of adversary. Proceedings of the 2017 Iran Workshop on Communication and Information Theory (IWCIT)(pp. 1-6).