DOI QR코드

DOI QR Code

Comparison analysis of fracture load and flexural strength of provisional restorative resins fabricated by different methods

제작방법에 따른 임시 수복용 레진의 파절강도 및 굴곡강도에 관한 연구

  • Cho, Won-Tak (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Choi, Jae-Won (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 조원탁 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 최재원 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2019.05.02
  • Accepted : 2019.05.30
  • Published : 2019.07.31

Abstract

Purpose: This study was undertaken to compare fracture and flexural strength of provisional restorative resins fabricated by additive manufacturing, subtractive manufacturing, and conventional direct technique. Materials and methods: Five types of provisional restorative resin made with different methods were investigated: Stereolithography apparatus (SLA) 3D printer (S3Z), two digital light processing (DLP) 3D printer (D3Z, D3P), milling method (MIL), conventional method (CON). For fracture strength test, premolar shaped specimens were prepared by each method and stored in distilled water at $37^{\circ}C$ for 24 hours. Compressive load was measured using a universal testing machine (UTM). For flexural strength test, rectangular bar specimens ($25{\times}2{\times}2mm$) were prepared by each method according to ISO 10477 and flexural strength was measured by UTM. Results: Fracture strengths of the S3Z, D3Z, and D3P groups fabricated by additive manufacturing were not significantly different from those of MIL and CON groups (P>.05/10=.005). On the other hand, the flexural strengths of S3Z, D3P, and MIL groups were significantly higher than that of CON group (P<.05), but the flexural strength of D3Z group was significantly lower than that of CON group (P<.05). Conclusion: Within the limitation of our study, provisional restorative resins made from additive manufacturing showed clinically comparable fracture and flexural strength as those made by subtractive manufacturing and conventional method.

목적: 본 연구의 목적은 적층 가공법, 절삭 가공법 및 직접법에 의해 제작된 임시 수복용 레진의 파절강도와 굴곡강도를 비교하는 것이다. 재료 및 방법: 각각 다른 방법들로 제작된 5가지 방법의 임시 수복용 레진을 조사하였다: Stereolithography apparatus (SLA) 3D 프린터를 이용한 적층 가공법(S3Z군), 두 가지 digital light processing (DLP) 3D 프린터를 이용한 적층 가공법(D3Z군, D3P군), 절삭 가공법(MIL군), 전통적인 방식의 직접법(CON군). 파절강도 시험은 각 방법을 이용하여 소구치 형태의 시편을 준비하였고, 굴곡강도 시험은 각 방법을 이용하여 직사각형의 바 형태의 시편 ($25{\times}2{\times}2mm$)을 준비하여 universal testing machine (UTM)을 사용하여 평가하였다. 결과: 적층 가공을 이용해 제작된 S3Z군, D3Z군, D3P군의 파절강도는 MIL군 및 CON군의 파절강도와 유의한 차이가 없었다 (P > .05/10 = .005). 한편, S3Z군, D3P군, MIL군의 굴곡강도는 CON군의 굴곡강도보다 높았으나 (P < .05), D3Z군의 굴곡강도는 CON군보다 낮았다 (P < .05). 결론: 본 연구의 한계 내에서 적층 가공법으로 제작된 임시 수복용 레진은 절삭 가공법과 기존에 사용되었던 직접법에 의해 제작된 임시수복용 레진과 임상적으로 유사한 파절강도, 굴곡강도를 나타냈다.

Keywords

References

  1. Park JS, Park MG. Effect of aging treatment on the flexural properties of polymer provisional restoration materials. Korean J Dent Mater 2013;40:215-21.
  2. Shillingburg HT Jr, Hobo S, Whitsett LD. Fundamentals of fixed prosthodontics. 3rd ed. Chicago; Quintessence Publishing Co; 1997. p. 225-7.
  3. Song KY, Sorensen JA. Marginal adaptation of new provisional materials for fixed prosthodontics. J Dent Rehabil Appl Sci 1997;13:247-55.
  4. Song ES, Kim BJ, Lim YJ, Lee JJ. Survey study on the preference of dental medical personnel for dental CAD/CAM milling machines. J Korean Acad Prosthodont 2018;56:188-98. https://doi.org/10.4047/jkap.2018.56.3.188
  5. DeLong R, Heinzen M, Hodges JS, Ko CC, Douglas WH. Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 2003;82:438-42. https://doi.org/10.1177/154405910308200607
  6. Fuster-Torres MA, Albalat-Estela S, Alcaniz-Raya M, Penarrocha-Diago M. CAD / CAM dental systems in implant dentistry: update. Med Oral Patol Oral Cir Bucal 2009;14:E141-5.
  7. Lee S. Prospect for 3D printing technology in medical, dental, and pediatric dental field. J Korean Acad Pediatr Dent 2016;43:93-108.
  8. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop 2014;145:108-15. https://doi.org/10.1016/j.ajodo.2013.05.011
  9. Karaokutan I, Sayin G, Kara O. In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont 2015;7:27-31. https://doi.org/10.4047/jap.2015.7.1.27
  10. Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27:339-47. https://doi.org/10.1016/j.dental.2010.11.012
  11. Nejatidanesh F, Momeni G, Savabi O. Flexural strength of interim resin materials for fixed prosthodontics. J Prosthodont 2009;18:507-11. https://doi.org/10.1111/j.1532-849X.2009.00473.x
  12. Mehrpour H, Farjood E, Giti R, Barfi Ghasrdashti A, Heidari H. Evaluation of the flexural strength of interim restorative materials in fixed prosthodontics. J Dent (Shiraz) 2016;17:201-6.
  13. Seo DG, Roh BD. The comparison of relative reliability on biaxial and three point flexural strength testing methods of light curing composite resin. J Korean Acad Conserv Dent 2006;31:58-65. https://doi.org/10.5395/JKACD.2006.31.1.058
  14. Mormann WH, Brandestini M, Lutz F, Barbakow F. Chairside computer-aided direct ceramic inlays. Quintessence Int 1989;20:329-39.
  15. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-7. https://doi.org/10.1016/j.prosdent.2015.12.002
  16. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200. https://doi.org/10.1016/j.dental.2017.10.003
  17. Matsumura H, Leinfelder KF. Three-body wear of four types of light-activated composite resin veneering materials. Quintessence Int 1994;25:425-30.
  18. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105:97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  19. Weaver RE, Goebel WM. Reactions to acrylic resin dental prostheses. J Prosthet Dent 1980;43:138-42. https://doi.org/10.1016/0022-3913(80)90176-6
  20. Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dent 1996;24:141-8. https://doi.org/10.1016/0300-5712(95)00043-7
  21. Chadwick RG. Thermocycling--the effects upon the compressive strength and abrasion resistance of three composite resins. J Oral Rehabil 1994;21:533-43. https://doi.org/10.1111/j.1365-2842.1994.tb01167.x
  22. Park SM, Kim SK, Park JM, Kim JH, Jeon YT, Koak JY. Flexural strength of various kinds of the resin bridges fabricated with 3D printing. J Dent Rehabil Appl Sci 2017;33:260-8. https://doi.org/10.14368/jdras.2017.33.4.260

Cited by

  1. 치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가 vol.19, pp.6, 2019, https://doi.org/10.13065/jksdh.20190094
  2. 절삭 및 적층 가공법으로 제작된 3본 고정성 국소의치의 변연 및 내면 적합도에 관한 연구 vol.58, pp.1, 2020, https://doi.org/10.4047/jkap.2020.58.1.7
  3. 디지털 광원 처리 프린터로 제작된 임시수복용 레진의 후경화 기계에 따른 굴곡강도 연구 vol.42, pp.4, 2019, https://doi.org/10.14347/jtd.2020.42.4.341
  4. 표면연마와 제작방법에 따른 임시 수복용 레진의 굽힘강도에 관한 비교 연구 vol.37, pp.1, 2019, https://doi.org/10.14368/jdras.2021.37.1.16