Fig. 1. Preparation of samples.
Fig. 2. The simple linear regression scatter plot of Scots pine samples.
Fig. 3. The simple linear regression scatter plot of sessile oak samples.
Fig. 4. The multiple regression matrices of samples.
Table 1. Results of the descriptive statistics of test
Table 2. Pearson correlations (r) and linear regression (R2)testvalues
Table 3. Pearson correlations (r) and linear regression (R2) test values
References
- Alwan, A.A. 2011. Misconception of heat and temperature among physics students. Procedia - Social and Behavioral Sciences 12(2011): 600-614. https://doi.org/10.1016/j.sbspro.2011.02.074
- Anjos, O., Rodrigues, C., Morais, J., Pereira, H. 2014. Effect of density on the compression behaviour of cork. Materials & Design 53: 1089-1096. https://doi.org/10.1016/j.matdes.2013.07.038
- Bucur, V. 2006. Acoustics of Wood, Springer-Verlag, Berlin, Germany.
- Budakci, M., Pelit, H., Sonmez, A., Korkmaz, M. 2016. The effects of densification and heat post- treatment on hardness and morphological properties of wood materials. Bioresources 11(3): 7822-7838.
- Cengel, Y.A., Ghajar, A.J. 2015. Heat and Mass Transfer: Fundamentals and Applications, McGraw-Hill Education, New York, USA.
- Cha, J.K. 2015. Determination of true modulus of elasticity and modulus of rigidity for domestic woods with different slenderness ratios using nondestructive tests. Journal of the Korean Wood Science and Technology 43(1): 36-42. https://doi.org/10.5658/WOOD.2015.43.1.36
- Chung, H., Han, Y., Park, J.H., Chang, Y.S., Park, Y., Yang, S.Y., Yeo, H. 2016. A study on dimensional stability and thermal performance of superheated steam treated and thermal compressed wood. Journal of the Korean Wood Science and Technology 44(2): 184-190. https://doi.org/10.5658/WOOD.2016.44.2.184
- Dundar, T., Kurt, S., As, N. 2012. Nondestructive evaluation of wood strength using thermal conductivity. BioResources 7(3): 3306-3316.
- Evans, R., Ilic, J. 2001. Rapid prediction of wood stiffness from microfibril angle and density. Forest Products Journal 51(3): 53-57.
- Geib, S.M., Filley, T.R., Hatcher, P.G., Hoover, K., Carlson, J.E., Jimenez G.M.M., Nakagawa I.A., Sleighter R.L., Tien, M. 2008. Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences 105(35): 12932-12937.
- Gorgun, H.V., Dundar, T. 2016. Comparison of acoustic-based nondestructive test methods for assessing the bending properties of Lumbers. Kastamonu Univ., Journal of Forestry Faculty 16(2): 616-621.
- ISO 13061-17. Physical and mechanical properties of wood -- Test methods for small clear wood specimens - Part 17: Determination of ultimate stress in compression parallel to grain. International Organization for Standardization, Geneva, Switzerland.
- Kollmann, F., Cote, W.A. 1968. Principles of Wood Science and Technology: Solid Wood. Springer-Verlag, Berlin, Germany.
- Labudova, G., Vozarova, V. 2002. Uncertainty of the thermal conductivity measurement using the transient hot wire method. Journal of Thermal Analysis and Calorimetry 67(1): 257-265. https://doi.org/10.1023/A:1013774922355
- Lee, J.J., Kim, J.W. 1998. Estimating MOE of thermal degraded wood by stress wave method, Journal of the Korean Wood Science and Technology 26(3): 9-15.
- Lestari A.S.R.D., Hadi, Y.S., Hermawan, D., Santoso, A. 2018. Physical and Mechanical Properties of Glued Laminated Lumber of Pine (Pinus merkusii) and Jabon (Anthocephalus cadamba). Journal of the Korean Wood Science and Technology 46(2): 143-148. https://doi.org/10.5658/WOOD.2018.46.2.143
- Loferski, J.R. 2001. Technologies for wood preservation in historic preservation. Archives and Museum Informatics 13(3-4): 273-290. https://doi.org/10.1023/A:1012468326445
- Niemz, P., Mannes, D. 2012. Non-destructive testing of wood and wood-based materials. Journal of Cultural Heritage 13(3): 26-34. https://doi.org/10.1016/j.culher.2012.04.001
- Niklas, K.J., Spatz, H.-C. 2010. Worldwide correlations of mechanical properties and green wood density. American Journal of Botany 97(10): 1587-1594. https://doi.org/10.3732/ajb.1000150
- Oh, S. 2016. Evaluation of influences of artificial defect of wood deck using non-destructive ultrasonic testing. Journal of the Korean Wood Science and Technology 44(1): 1-8. https://doi.org/10.5658/WOOD.2016.44.1.1
- Pang, S.J., Jeong, G.Y. 2019. Effects of density, temperature, size, grain angle of wood materials on nondestructive moisture meters. Journal of the Korean Wood Science and Technology 47(1): 40-50. https://doi.org/10.5658/WOOD.2019.47.1.40
- Park, J.C., Hong, S.I. 2009. The practice of bending deflection using non-destructive MOE of glulam. Journal of the Korean Wood Science and Technology 37(1): 48-55.
- Qian, W., Dai, J., Li, X., Chang, L. 2015. The systematic application of non-destructive testing techniques for ancient wood buildings. In: Advances in Civil Engineering and Building Materials IV (CEBM 2014), Ed. by S.Y. Chang, S.K.A. Bahar, A.A.M. Husain, J. Zhao, CRC Press, Hong Kong.
- Quartau, J.A. 2009. Preventative fire procedures in Mediterranean woods are destroying their insect Biodiversity: A plea to the EU Governments. Journal of Insect Conservation 13(3): 267-270. https://doi.org/10.1007/s10841-008-9177-y
- Reisel, J.M. 2016. Principles of Engineering Thermodynamics SI Edition. Cengage Learning, Massachusetts, USA.
- Richter, C. 2015. Wood Characteristics. Wood Characteristics: Description, Causes, Prevention, Impact on Use and Technological Adaptation. Springer International Publishing, Cham, Switzerland.
- Ross, R.J. 2015. Nondestructive Testing and Evaluation of Wood (General Technical Report FPL-GTR-238). American Society of Civil Engineers, Washington, USA.
- Son, D.W., Lee, D.H. 2004. Wood decay detection by nondestructive methods. Journal of the Korean Wood Science and Technology 42(2): 74-81.
- Suleiman, B.M., Larfeldt, J., Leckner, B., Gustavsson, M. 1999. Thermal conductivity and diffusivity of wood. Wood Science and Technology 33(6): 465-473. https://doi.org/10.1007/s002260050130
- TS 2471. 2005. Wood, Determination of Moisture Content for Physical and Mechanical Tests. Turkish Standards Institute, Ankara, Turkey.
- TS 2472. 1976. Wood - Determination of Density for Physical and Mechanical Tests. Turkish Standards Institute, Ankara, Turkey.
- TS 2474. 1976. Wood - Determination of Ultimate Strength in Static Bending. Turkish Standards Institute, Ankara, Turkey.
- TS 2478. 1976. Wood-Determination of Modulus of Elasticity in Static Bending. Turkish Standards Institute, Ankara, Turkey.
- TS ISO 8302. 2002. Thermal insulation; determination of steady-state thermal resistance and related properties; guarded hot plate apparatus. Turkish Standards Institute, Ankara, Turkey.
- Vozar, L. 1996. A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method. Journal of Thermal Analysis 46(2): 495-505. https://doi.org/10.1007/BF02135027
- Yang, J.L., Evans, R. 2003. Prediction of MOE of eucalypt wood from microfibril angle and density. Holz als Roh-und Werkstoff 61: 449-452. https://doi.org/10.1007/s00107-003-0424-3
- Zobel, B.J., van Buijtenen, J.P. 1989. Wood Variation. Springer-Verlag, Berlin, Germany.