DOI QR코드

DOI QR Code

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams

  • Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
  • Received : 2019.01.31
  • Accepted : 2019.06.15
  • Published : 2019.07.25

Abstract

For the first time, longitudinal and transverse wave propagation of triclinic nanobeam is investigated via a size-dependent shear deformation theory including stretching effect. Furthermore, the influence of initial stress is studied. To consider the size-dependent effects, the nonlocal strain gradient theory is used in which two small scale parameters predict the behavior of wave propagation more accurately. The Hamiltonian principle is adopted to obtain the governing equations of wave motion, then an analytic technique is applied to solve the problem. It is demonstrated that the wave characteristics of the nanobeam rely on the wave number, nonlocal parameter, strain gradient parameter, initial stress, and elastic foundation. From this paper, it is concluded that the results of wave dispersion in isotropic and anisotropic nanobeams are almost the same in the presented case study. So, in this case, triclinic nanobeam can be approximated with isotropic model.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. http://dx.doi.org/10.12989/scs.2016.20.5.963
  2. Aifantis, E.C. (2009), "Exploring the applicability of gradient elasticity to certain micro/nano reliability problems", Microsyst. Technol., 15(1), 109-115. https://doi.org/10.1007/s00542-008-0699-8
  3. Androulidakis, C., Koukaras, E.N., Frank, O., Tsoukleri, G., Sfyris, D., Parthenios, J., Pugno, N., Papagelis, K., Novoselov, K.S. and Galiotis, C. (2014), "Failure processes in embedded monolayer graphene under axial compression", Scientific Reports, 4, 5271. https://doi.org/10.1038/srep05271
  4. Apuzzo, A., Barretta, R., Faghidian, S., Luciano, R. and de Sciarra, F.M. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002
  5. Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Computat. Mater. Sci., 51(1), 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
  6. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., Int. J., 27(4), 479-493. http://dx.doi.org/10.12989/scs.2018.27.4.479
  7. Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  8. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., Int. J., 29(5), 579-590. http://dx.doi.org/10.12989/scs.2018.29.5.579
  9. Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412
  10. Baer, D.R., Burrows, P.E. and El-Azab, A.A. (2003), "Enhancing coating functionality using nanoscience and nanotechnology", Progress Organic Coatings, 47(3-4), 342-356. https://doi.org/10.1016/j.ijengsci.2017.03.007
  11. Barati, M.R. (2017a), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007
  12. Barati, M.R. (2017b), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., Int. J., 64(6), 683-693. http://dx.doi.org/10.12989/sem.2017.64.6.683
  13. Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009
  14. Batra, R., Qian, L. and Chen, L. (2004), "Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials", J. Sound Vib., 270(4), 1074-1086. http://dx.doi.org/10.1016/S0022-460X(03)00625-4
  15. Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., Int. J., 56(2), 223-240. http://dx.doi.org/10.12989/sem.2015.56.2.223
  16. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E: Low-Dimens. Syst. Nanostruct., 43(7), 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
  17. Bisheh, H.K. and Wu, N. (2019), "Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments", Compos. Part B: Eng., 162, 219-241. https://doi.org/10.1016/j.compositesb.2018.10.064
  18. Deotare, P.B., McCutcheon, M.W., Frank, I.W., Khan, M. and Loncar, M. (2009), "Coupled photonic crystal nanobeam cavities", Appl. Phys. Lett.rs, 95(3), 031102. https://doi.org/10.1063/1.3176442
  19. Ebrahimi, F., Barati, M.R. and Haghi, P. (2018), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 24(17), 3809-3818. https://doi.org/10.1177/1077546317711537
  20. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007
  21. Farajpour, A., Farokhi, H., Ghayesh, M.H. and Hussain, S. (2018a), "Nonlinear mechanics of nanotubes conveying fluid", Int. J. Eng. Sci., 133, 132-143. https://doi.org/10.1016/j.ijengsci.2018.08.009
  22. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018b), "Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes", Int. J. Mech. Sci., 150, 510-525. https://doi.org/10.1016/j.ijmecsci.2018.09.043
  23. Farajpour, A., Farokhi, H. and Ghayesh, M.H. (2019), "Chaotic motion analysis of fluid-conveying viscoelastic nanotubes", Eur. J. Mech.-A/Solids, 74, 281-296. https://doi.org/10.1016/j.euromechsol.2018.11.012
  24. Flavel, B. (2018), "INT-Carbon Nanotubes, Solar Cells and Sensors", Adv. Eng. Mater., 1703241.
  25. Gafour, Y., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2013), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Physica E: Low-dimens. Syst. Nanostruct., 48, 118-123. https://doi.org/10.1016/j.physe.2012.11.006
  26. Gao, Y., Xiao, W.-S. and Zhu, H. (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., Int. J., 69(2), 205-219. http://dx.doi.org/10.12989/sem.2019.69.2.205
  27. Ghayesh, M.H. (2018), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solids, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001
  28. Ghayesh, M.H. and Farajpour, A. (2018), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003
  29. Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., Int. J., 28(5), 589-606. http://dx.doi.org/10.12989/scs.2018.28.5.589
  30. Hua, J., Duan, Z., Song, C. and Liu, Q. (2017), "Molecular dynamics study on the tensile properties of graphene/Cu nanocomposite", Int J. Computat. Mater. Sci. Eng., 6(3), 1750021. https://doi.org/10.1142/S204768411750021X
  31. Janghorban, M. and Nami, M. (2015), "Wave propagation in rectangular nanoplates based on a new strain gradient elasticity theory with considering in-plane magnetic field", Iran. J. Mater. Forming, 2(2), 35-43. https://doi.org/10.22099/IJMF.2015.3239
  32. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  33. Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 61(5), 617-624. http://dx.doi.org/10.12989/sem.2017.61.5.617
  34. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212
  35. Karami, B. and Janghorban, M. (2019a), "Characteristics of elastic waves in radial direction of anisotropic solid sphere, a new closed-form solution", Eur. J. Mech.-A/Solids, 76, 36-45. https://doi.org/10.1016/j.euromechsol.2019.03.008
  36. Karami, B. and Janghorban, M. (2019b), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
  37. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. http://dx.doi.org/10.12989/anr.2019.7.1.051
  38. Karami, B. and Shahsavari, D. (2019), "Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 23(3), 215-225. http://dx.doi.org/10.12989/sss.2019.23.3.215
  39. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. http://dx.doi.org/10.12989/scs.2017.25.3.361
  40. Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
  41. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-018-0664-9
  42. Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. http://dx.doi.org/10.12989/scs.2018.27.2.201
  43. Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  44. Karami, B., Shahsavari, D. and Janghorban, M. (2018e), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001
  45. Karami, B., Shahsavari, D. and Janghorban, M. (2018f), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25 (12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143
  46. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018g), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004
  47. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. http://dx.doi.org/10.12989/sem.2019.69.5.487
  48. Karami, B., janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. http://dx.doi.org/10.12989/sem.2019.70.1.055
  49. Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019c), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022
  50. Karami, B., shahsavari, D., janghorban, M. and Li, L. (2019d), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089
  51. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019e), "Wave dispersion of nanobeams incorporating stretching effect", Waves Random Complex Media, 1-21. https://doi.org/10.1080/17455030.2019.1607623
  52. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019f), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  53. Karami, B., Shahsavari, D., Karami, M. and Li, L. (2019g), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(6), 2149-2169. https://doi.org/10.1177/0954406218781680
  54. Karami, B., Shahsavari, D. and Li, L. (2018h), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020
  55. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018i), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. http://dx.doi.org/10.12989/scs.2018.29.3.349
  56. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019j), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451
  57. Leite, M.L., da Cunha, N.B. and Costa, F.F. (2018), "Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment", Pharmacology & therapeutics, 183, 160-176. https://doi.org/10.1016/j.pharmthera.2017.10.010
  58. Li, L. and Hu, Y. (2017), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  59. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  60. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  61. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  62. Lin, Q.-Y., Jing, G., Zhou, Y.-B., Wang, Y.-F., Meng, J., Bie, Y.-Q., Yu, D.-P. and Liao, Z.-M. (2013), "Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition", ACS Nano, 7(2), 1171-1177. https://doi.org/10.1021/nn3053999
  63. Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024
  64. Lu, L., Guo, X. and Zhao, J. (2018), "On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy", Int. J. Eng. Sci., 124, 24-40. https://doi.org/10.1016/j.ijengsci.2017.11.020
  65. Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058
  66. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519
  67. Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B: Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030
  68. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. http://dx.doi.org/10.12989/sss.2018.21.4.397
  69. Mouffoki, A., Bedia, E., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. http://dx.doi.org/10.12989/sss.2017.20.3.369
  70. Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel Compos. Struct., Int. J., 28(6), 749-758. http://dx.doi.org/10.12989/scs.2018.28.6.749
  71. Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. http://dx.doi.org/10.12989/scs.2014.17.5.641
  72. Rahmani, O., Deyhim, S., Hosseini, S. and Hossein, A. (2018), "Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory", Steel Compos. Struct., Int. J., 27(3), 371-388. http://dx.doi.org/10.12989/scs.2018.27.3.371
  73. Sahmani, S. and Aghdam, M. (2017a), "Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052
  74. Sahmani, S. and Aghdam, M. (2017b), "Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams", Compos. Struct., 179, 77-88. https://doi.org/10.1016/j.compstruct.2017.07.064
  75. Sahmani, S. and Aghdam, M. (2018), "Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells", Compos. Part B: Eng., 132, 258-274. https://doi.org/10.1016/j.compositesb.2017.09.004
  76. Shahsavari, D., Karami, B. and Li, L. (2018a), "Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model", Comptes Rendus Mecanique, 346(12), 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011
  77. Shahsavari, D., Karami, B. and Li, L. (2018b), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. http://dx.doi.org/10.12989/scs.2018.29.1.053
  78. Shahsavari, D., Karami, B. and Mansouri, S. (2018c), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004
  79. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008
  80. She, G.-L., Yuan, F.-G. and Ren, Y.-R. (2018), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002
  81. She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
  82. Subramani, K., Lavenus, S., Roze, J., Louarn, G. and Layrolle, P. (2018), "Impact of nanotechnology on dental implants", In: Emerging Nanotechnologies in Dentistry (Second Edition), Elsevier.
  83. Verma, M., Sheoran, P. and Chaudhury, A. (2018), "Application of Nanotechnology for Cancer Treatment", In: Advances in Animal Biotechnology and its Applications, Springer, pp. 161-178. https://doi.org/10.1007/978-981-10-4702-2_10
  84. Walton, O.R. (1984), "Application of molecular dynamics to macroscopic particles", Int. J. Eng. Sci., 22(8-10), 1097-1107. https://doi.org/10.1016/0020-7225(84)90110-1
  85. Xiang, Y. and Shen, H.-S. (2016), "Compressive buckling of rippled graphene via molecular dynamics simulations", Int. J. Struct. Stabil. Dyn., 16(10), 1550071. https://doi.org/10.1142/S0219455415500716
  86. Xu, X.-J., Zheng, M.-L. and Wang, X.-C. (2017), "On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics", Int. J. Eng. Sci., 119, 217-231. https://doi.org/10.1016/j.ijengsci.2017.06.025
  87. Zaoui, F.Z., Tounsi, A. and Ouinas, D. (2017), "Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory", Smart Struct. Syst., Int. J., 20(4), 509-524. http://dx.doi.org/10.12989/sss.2017.20.4.509
  88. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Composites Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  89. Zeighampour, H., Beni, Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin-Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037
  90. Zenkour, A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., Int. J., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
  91. Zhen, Y. and Zhou, L. (2017), "Wave propagation in fluidconveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory", Modern Phys. Lett. B, 31(8), 1750069. https://doi.org/10.1142/S0217984917500695

Cited by

  1. Numerical calculation and test of the composite materials under dynamic loading vol.38, pp.1, 2019, https://doi.org/10.12989/scs.2021.38.1.079