DOI QR코드

DOI QR Code

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng (College of CivilEngineering, Nanjing Tech University) ;
  • Li, Jianchun (School of Civil Engineering and Environmental Engineering, University of Technology Sydney)
  • Received : 2018.08.11
  • Accepted : 2019.02.27
  • Published : 2019.07.25

Abstract

Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Keywords

References

  1. Behrooz, M., Wang, X. and Gordaninejad, F., (2014a), "Modeling of a new semi-active/passive magnetorheological elastomer isolator", Smart Mater. Struct., 23(4), 045013. https://doi.org/10.1088/0964-1726/23/4/045013
  2. Behrooz, M., Wang, X. and Gordaninejad, F., (2014b), "Performance of a new magnetorheological elastomer isolation system", Smart Mater. Struct., 23(4), 045014. https://doi.org/10.1088/0964-1726/23/4/045014
  3. Chen, L., Gong, X. and Li, W. (2007), "Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers", Smart. Mater. Struct., 16(6), 2645. https://doi.org/10.1088/0964-1726/16/6/069
  4. Chen, S., Wang, X., Zhang, Z., Mu, W. and Li, R., (2016), "Optimal design of laminated-MRE bearings with multi-scale model", Smart Mater. Struct., 25(10), 105037. https://doi.org/10.1088/0964-1726/25/10/105037
  5. Chen, X., Li, J., Li, Y. and Gu, X. (2016), "Lyapunov-based semiactive control of structure with MRE base isolator", Earthq. Struct., 11(6), 1077-1099. https://doi.org/10.12989/eas.2016.11.6.1077
  6. Chen, X., Li, Y., Li, J. and Gu, X. (2018), "A novel dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with magnetorheological (MR) devices", Smart. Mater. Struct., 27(1), 015005. https://doi.org/10.1088/1361-665X/aa98be
  7. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart. Mater. Struct., 5(5), 565. https://doi.org/10.1088/0964-1726/5/5/006
  8. Gu, X., Li, Y. and Li, J. (2016), "Investigations on response time of magnetorheological elastomer isolator for real-time control implementation", Smart. Mater. Struct., 25(11), 11LT03. https://doi.org/10.1088/0964-1726/25/11/11LT03
  9. Gu, X., Yu, Y., Li, J. and Li, Y., (2017), "Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model", J. Sound Vib., 406, 346-362 https://doi.org/10.1016/j.jsv.2017.06.023.
  10. Gu, X., Yu, Y., Li, Y., Li, J., Askari, M. and Samali, B., (2019), "Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control", Mech. Syst. Signal Pr., 119, 380-398. https://doi.org/10.1016/j.ymssp.2018.10.001.
  11. Jangid, R. and Kelly, J.M. (2001), "Base isolation for near-fault motions", Earthq. Eng. Struct. D., 30(5), 691-707. https://doi.org/10.1002/eqe.31
  12. Jung, H.J., Eem, S.H., Jang, D.D. and Koo, H.H. (2011), "Seismic Performance analysis of a smart base-isolation system considering dynamics of MR elastomer", J. Intel. Mat. Syst. Str., 22(13), 1439-1450. https://doi.org/10.1177/1045389X11414224.
  13. Kelly, J.M. (1999), "The role of damping in seismic isolation", Earthq. Eng. Struct. D., 28(1), 3-20. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D
  14. Kobori, T., Takahashi, M., Nasu, T, Niwa, N. and Ogasawara, K. (1993), "Seismic response controlled structure with active variable stiffness system", Earthq. Eng. Struct. D., 22(11), 925-941. https://doi.org/10.1002/eqe.4290221102.
  15. Koo, J. H., Khan, F., Jang, D.D. and Jung, H.H. (2009), "Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings", Smart. Mater. Struct., 19(11),117002. https://doi.org/10.1088/0964-1726/19/11/117002
  16. Leng, D., Xu, K., Ma, Y., Liu, G. and Sun, L., (2018), "Modeling the behaviors of magnetorheological elastomer isolator in shear-compression mixed mode utilizing artificial neural network optimized by fuzzy algorithm (ANNOFA)", Smart. Mater. Struct., in press.
  17. Li, J., Li, Y., Li, W. and Samali, B., (2013a), "Development of adaptive seismic isolators for ultimate seismic protection of civil structures", Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems.
  18. Li, W.H., Zhou, Y. and Tian, T. (2010), "Viscoelastic properties of MR elastomers under harmonic loading", Rheol. Acta, 49(7), 733-740. https://doi.org/10.1007/s00397-010-0446-9
  19. Li, Y. and Li, J. (2015a), "Finite element design and analysis of adaptive base isolator utilizing laminated multiple magnetorheological elastomer layers", J. Intel. Mat. Syst. Str., 26(14), 1861-1870. https://doi.org/10.1177/1045389X15580654.
  20. Li, Y. and Li, J. (2015b), "A highly-adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modelling", J. Vib. Acoust., 137(1), 011009. doi: 10.1115/1.4027626.
  21. Li, Y. and Li, J. (2017), "On rate-dependent mechanical model for adaptive magnetorheological elastomer base isolator", Smart. Mater. Struct., 26(4), 045001. https://doi.org/10.1088/1361-665X/aa5f95
  22. Li, Y., Li, J. and Samali, B. (2012), "A novel adaptive base isolator utilising magnetorheological elastomer", Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia, 11-14 December.
  23. Li, Y., Li, J. and Samali, B. (2013d), "On the magnetic field and temperature monitoring of a solenoid coil for a novel magnetorheological elastomer base isolator", J. Phys. Conf. Ser. 412(1), 012033 https://doi.org/10.1088/1742-6596/412/1/012033
  24. Li, Y., Li, J., Li, W. and Du, H. (2014), "A state-of-the-art review on magnetorheological elastomer devices", Smart. Mater. Struct., 23(12), 123001. https://doi.org/10.1088/0964-1726/23/12/123001
  25. Li, Y., Li, J., Li, W. and Samali, B. (2013b), "Development and characterization of a magnetorheological elastomer based adaptive seismic isolator", Smart Mater. Struct., 22(3), 035005. https://doi.org/10.1088/0964-1726/22/3/035005
  26. Li, Y., Li, J., Tian, T. and Li, W., (2013c), "A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control", Smart Mat. Struct., 22(9), 095020. https://doi.org/10.1088/0964-1726/22/9/095020
  27. Lu, L. Y., Lin, G.L. and Lin, C.Y. (2011), "Experiment of an ABS-type control strategy for semi-active friction isolation systems", Smart Struct. Syst., 8(5), 501-524. http://dx.doi.org/10.12989/sss.2011.8.5.501.
  28. Lu, L.Y. and Lin, G.L. (2009), "Fuzzy friction controllers for semi-active seismic isolation systems", J. Intel. Mat. Syst. Str., 20(14), 1747-1770. https://doi.org/10.1177/1045389X09343788.
  29. Makris N. (1997), "Rigidity-plasticity-viscosity: can electorheological dampers protect base-isolated structuers from near-source ground motions?", ,Earthq. Eng. Struct. D., 26(5), 57-591 https://doi.org/10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6
  30. Nagarajaiah, S. and Narasimhan, S. (2006), "Smart base-isolated benchmark building. Part II: Phase I sample controllers for linear isolation systems", Struct. Control Health Monit., 13(2-3), 589-604. https://doi.org/10.1002/stc.100.
  31. Narasimhana S. and Nagarajaiah S. (2005), "A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems", Eng. Struct., 27(4), 514-523 https://doi.org/10.1016/j.engstruct.2004.11.010.
  32. Ozbulut, O.E. and Silwal, B. (2016), "Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes", Smart Struct. Syst., 17(5), 709-724. https://doi.org/10.12989/sss.2016.17.5.709
  33. Tiong, P.L.Y., Kelly, J.M. and Or, T.T. (2017), "Design approach of high damping rubber bearing for seismic isolation", Smart Struct. Syst., 20(3), 303-309. https://doi.org/10.12989/sss.2017.20.3.303
  34. Usman, M., Sung, S.H., Jang, D.D., Jung, H.J. and Koo, J.H., (2009), "Numerical investigation of smart base isolation system employing MR elastomer", J. Phys. Conf. Ser., 149(1), 012099. https://doi.org/10.1088/1742-6596/149/1/012099
  35. Yang, J., Du, H., Li, W., Li, Y., Li, J., Sun, S. and Deng, H. (2013), "Experimental study and modeling of a novel magnetorheological elastomer isolator", Smart Mater. Struct., 22(11), 117001. https://doi.org/10.1088/0964-1726/22/11/117001
  36. Yi, F., Dyke S.J., Caicedo, J.M and Carlson, J.D. (2001), "Experimental verification of multiinput seismic control strategies for smart dampers", J. Eng. Mech., 127(11), 1152-1164. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:11(1152).
  37. Yoshida, O. and Dyke, S.J. (2004), "Seismic control of a nonlinear benchmark building using smart dampers", J. Eng. Mech., 130(4), 386-392. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(386).
  38. Yoshioka, H., Ramallo, J. and Spencer, B.F. (2002), "Smart base isolation strategies employing magnetorheological dampers", J. Eng. Mech., 128(5), 540-551. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(540).
  39. Yu, Y., Li, Y. and Li, J. (2014), "Parameter identification of an improved Dahl model for magnetorheological elastomer base isolator based on enhanced Genetic algorithm", Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials, Byron Bay, Australia, 9-12 December 2014.
  40. Yu, Y., Li, Y. and Li, J. (2015a), "Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization", J. Intel. Mat. Syst. Str., 26(18), 2446-2462. https://doi.org/10.1177/1045389X14556166.
  41. Yu, Y., Li, Y. and Li, J. (2015b), "Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator", Meccanica, 50(11), 2691-2707. https://doi.org/10.1007/s11012-015-0179-z
  42. Yu, Y., Li, Y. and Li, J. (2015c), "Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm", J. Intel. Mat. Syst. Str., 26(14), 1789-1798 https://doi.org/10.1177/1045389X15577649.
  43. Yu, Y., Li, Y., Li, J. and Gu, X., (2016a), "A novel hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator", Smart. Mater Struct., 25(5), 055029. https://doi.org/10.1088/0964-1726/25/5/055029
  44. Yu, Y., Li, Y., Li, J. and Gu, X. (2016b), "Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator", Neurocomputing, 211, 41-52. https://doi.org/10.1016/j.neucom.2016.02.074.
  45. Yu, Y., Sayed, R., Li, J., Li, Y. and Ha, Q. (2016c), "Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control", Earthq. Struct., 11(6), 943-966. http://dx.doi.org/10.12989/eas.2016.11.6.943.
  46. Zeng, J., Guo, Y., Li, Y., Zhu, J. and Li, J., (2013), "Two-dimensional magnetic property measurement for magneto-rheological elastomer", J. Appl. Phys., 113(17), 17A919. https://doi.org/10.1063/1.4796046.

Cited by

  1. Improved magnetic circuit analysis of a laminated magnetorheological elastomer device featuring both permanent magnets and electromagnets vol.29, pp.8, 2019, https://doi.org/10.1088/1361-665x/ab8029