과제정보
연구 과제 주관 기관 : National Science Centre, Poland
참고문헌
- Bajkowski, J.M., Bajer, C.I., Dyniewicz, B. and Pisarski, D. (2016), "Vibration control of adjacent beams with pneumatic granular coupler: an experimental study", Mech. Res. Commun., 78, 51-56. https://doi.org/10.1016/j.mechrescom.2016.10.005.
- Bozorgvar, M. and Zahrai, S.M. (2019), "Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution", Smart Struct. Syst., 23(1), 1-14. https://doi.org/10.12989/sss.2019.23.1.001.
- Faraj, R., Holnicki-Szulc, J., Knap, L. and Senko, J. (2016), "Adaptive inertial shock-absorber", Smart Mater. Struct., 25, 035031. https://doi.org/10.1088/0964-1726/25/3/035031.
- Fesharaki, J. and Golabi, S. (2016), "A novel method to specify pattern recognition of actuators for stress reduction based on particle swarm optimization method", Smart Struct. Syst., 17(5), 725-742. http://dx.doi.org/10.12989/sss.2016.17.5.725.
- Friswell, M. and Mottershead, J.E. (1995), Optimising transducer locations, [Chapter 4.6 in:] Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, 71-77.
- Gaul, L. and Nitsche, R. (2001), "The role of friction in mechanical joints", Appl. Mech. Rev., 54(2), 93-106. doi:10.1115/1.3097294.
- Gaul, L., Lenz, J. and Sachau, D. (1998), "Active damping of space structures by contact pressure control in joints", J. Struct. Mech., 26(1), 81-100. https://doi.org/10.1080/08905459808945421.
- Graczykowski, C. and Holnicki-Szulc, J. (2015), "Crashworthiness of inflatable thin-walled structures for impact absorption", Math. Probl. Eng., 2015, 830471. http://dx.doi.org/10.1155/2015/830471.
- Griskevicius, P., Zeleniakiene, D., Ostrowski, M. and Holnicki-Szulc, J. (2007), "Crash-worthiness simulations of roadside restraint systems", Proceedings of the e 11th Int'l Conf on Transport Means, Kaunas, October, 282-285.
- Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review", J. Intel. Mat. Syst. Str., 21(2), 1227-1243. https://doi.org/10.1177/1045389X10381659.
- Gutierrez Soto, M. and Adeli, H. (2013), "Placement of control devices for passive, semi-active, and active vibration control of structures", Scientia Iranica, 20(6), 1567-1578.
- Holnicki-Szulc, J., Graczykowski, C., Mikulowski, G., Mroz, A., Pawlowski, P. and Wiszowaty, R. (2015), "Adaptive impact absorption-the concept and potential applications", Int. J. Protective Struct., 6(2), 357-377. https://doi.org/10.1260/2041-4196.6.2.357.
- Hurlebaus, S. and Gaul, L. (2006), "Smart structure dynamics", Mech. Syst. Signal Pr., 20, 255-281. https://doi.org/10.1016/j.ymssp.2005.08.025.
- Karami, K., Nagarajaiah, S. and Amini, F. (2016), "Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device", Smart Struct. Syst., 18(5), 955-982. http://dx.doi.org/10.12989/sss.2016.18.5.955.
- Liberzon, D. (2003), Switching in Systems and Control, Birkhauser Basel.
- Liu, Y., Waters, T.P. and Brennan, M.J. (2005), "A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances", J. Sound Vib., 280(1-2), 21-39. https://doi.org/10.1016/j.jsv.2003.11.048.
- Marzec, Z. and Holnicki-Szulc, J. (1998), "Strategy of impulse release of strain energy for damping of vibration", Proceedings of the NATO Advanced Research Workshop "Smart Structures", Pultusk-Warsaw, June.
- Michajlow, M., Jankowski, L., Szolc, T. and Konowrocki, R. (2017), "Semi-active reduction of vibrations in the mechanical system driven by an electric motor", Opt. Control Appl. Methods, 38(6), 922-933. https://doi.org/10.1002/oca.2297.
- Mikulowski, G. and Jankowski, L. (2009), "Adaptive Landing Gear: optimum control strategy and potential for improvement", J. Shock Vib., 16, 175-194. https://dx.doi.org/10.3233/SAV-2009-0460.
- Mroz, A., Holnicki-Szulc, J. and Biczyk, J. (2015), "Prestress accumulation-release technique for damping of impact-born vibrations: Application to self-deployable structures", Math. Probl. Eng., 2015, 720236. http://dx.doi.org/10.1155/2015/720236.
- Mroz, A., Orlowska, A. and Holnicki-Szulc, J. (2010), "Semi-active damping of vibrations. Prestress Accumulation-Release strategy development", J. Shock Vib., 17(2), 123-136. http://dx.doi.org/10.3233/SAV-2010-0502.
- Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), "Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm", Smart Struct. Syst., 15(4), 1041-1062. http://dx.doi.org/10.12989/sss.2015.15.4.1041.
- Onoda, J., Endo, T., Tamaoki, H. and Watanabe, N. (1990) "Vibration suppression by variable-stiffness members", AIAA J., 29(6), 977-983. https://doi.org/10.2514/3.59943.
- Pisarski, D. (2018a), "Optimal control of structures subjected to traveling load", J. Vib. Control, 24(7), 1283-1299. https://doi.org/10.1177/1077546316657244.
- Pisarski, D. (2018b), "Decentralized stabilization of semi-active vibrating structures", Mech. Syst. Signal Pr., 100, 694-705. https://doi.org/10.1016/j.ymssp.2017.08.003.
- Poplawski, B., Mikulowski, G., Mroz, A. and Jankowski, L. (2018), "Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments", Mech. Syst. Signal Pr., 100, 926-939. https://doi.org/10.1016/j.ymssp.2017.08.012.
- Soria, J.M., Diaz, I.M. and Garcia-Palacios, J.H. (2017), "Vibration control of a time-varying model-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., 20(5), 525-537. https://doi.org/10.12989/sss.2017.20.5.525.
- Spencer, Jr. B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
- Szmidt, T., Pisarski, D., Bajer, C.I. and Dyniewicz, B. (2017), "Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control", J. Sound Vib., 401, 127-138. https://doi.org/10.1016/j.jsv.2017.04.033.
- Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn. D.D., Vakakis, A.F. and Bergman, L.A. (2017), "Response attenuation in a largescale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers", J. Sound Vib., 389, 52-72. https://doi.org/10.1016/j.jsv.2016.11.003.
- Wilde, K., Miskiewicz, M. and Chroscielewski, J. (2013), "SHM System of the Roof Structure of Sports Arena Olivia", Proceedings of the 9th Int'l Workshop on Structural Health Monitoring (IWSHM), Stanford, CA, September.
- Xu, Z.D. and Shen, Y.P. (2003), "Intelligent bi-state control for the structure with magnetorheological dampers", J. Intel. Mat. Syst. Str., 14(1), 35-42. https://doi.org/10.1177/1045389X03014001004.
- Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309
- Xu, Z.D., Zhao, H.T. and Li, A.Q. (2004), "Optimal analysis and experimental study on structures with viscoelastic dampers", J. Sound Vib., 273(3), 607-618. https://doi.org/10.1016/S0022-460X(03)00522-4.
- Zawidzki, M. and Jankowski, L. (2018), "Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint", Smart Struct. Syst., 21(6), 715-725. https://doi.org/10.12989/sss.2018.21.6.715.
- Zhan, M., Wang, S.L., Yang, T., Liu, Y. and Yu, B.S. (2017), "Optimum design and vibration control of a space structure with the hybrid semi-active control devices", Smart Struct. Syst., 19(4), 341-350. https://doi.org/10.12989/sss.2017.19.4.341.
- Zhang, Q., Jankowski, L. and Duan, Z. (2013), "Simultaneous identification of moving vehicles and bridge damages considering road rough surface", Math. Probl. Eng., 2013, 963424. http://dx.doi.org/10.1155/2013/963424.
Cited by
- Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809