DOI QR코드

DOI QR Code

Enhance the damping density of eddy current and electromagnetic dampers

  • Li, Jin-Yang (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Zhu, Songye (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Shen, Jiayang (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
  • Received : 2019.02.28
  • Accepted : 2019.03.10
  • Published : 2019.07.25

Abstract

Over the past decades, a great variety of dampers have been developed and applied to mechanical, aerospace, and civil structures to control structural vibrations. This study is focused on two emerging damper types, namely, eddy current dampers (ECDs) and electromagnetic damper (EMDs), both of which are regarded as promising alternatives to commonly-applied viscous fluid dampers (VFDs) because of their similar mechanical behavior. This study aims to enhance the damping densities of ECDs and EMDs, which are typically lower than those of VFDs, by proposing new designs with multiple improvement measures. The design configurations, mechanisms, and experimental results of the new ECDs and EMDs are presented in this paper. The further comparison based on the experimental results revealed that the damping densities of the proposed ECD and EMD designs are comparable to those of market-available VFDs. Considering ECDs and EMDs are solid-state dampers without fluid leakage problems, the results obtained in this study demonstrate a great prospect of replacing conventional VFDs with the improved ECDs and EMDs in future large-scale applications.

Keywords

References

  1. Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031.
  2. Behrens, S., Fleming, A.J. and Moheimani, S.O.R. (2005), "Passive vibration control via electromagnetic shunt damping", IEEE/ASME T. Mechatronics, 10(1), 118-122. https://doi.org/10.1109/TMECH.2004.835341
  3. Behrens, S., Moheimani, S.O.R. and Fleming, A.J. (2003), "Multiple mode current flowing passive piezoelectric shunt controller", J. Sound Vib., 266(5), 929-942. https://doi.org/10.1016/S0022-460X(02)01380-9.
  4. Cassidy, I.L., Scruggs, J.T., Behrens, S. and Gavin, H.P. (2011), "Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications", J. Intel. Mat. Syst. Str., 22(17), 2009-2024. https://doi.org/10.1177/1045389X11421824.
  5. Ellis, R.C.C., Fink, R.A. and Rich, R.W. (1989), "Eddy Current Damper", NASA, Marshall Space Flight Center, The 23rd Aerospace Mechanisms Symposium;, Honeywell Space and Aviation Systems; Durham, NC, United States.
  6. Fleming, A.J. and Moheimani, S.O.R. (2006), "Inertial vibration control using a shunted electromagnetic transducer", IEEE/ASME T. Mechatronics, 11(1), 84-92. DOI: 10.1109/TMECH.2005.863364.
  7. Heald, M.A. (1988), "Magnetic braking: Improved theory", Am. J. Phys., 56(6), 521-522. https://doi.org/10.1119/1.15570.
  8. Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B. and Yao, J. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
  9. Inoue, T., Ishida, Y. and Sumi, M. (2008), "Vibration suppression using electromagnetic resonant shunt damper", J. Vib. Acoust., 130(4), 41003. doi:10.1115/1.2889916.
  10. Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285.
  11. Lee, K., and Park, K. (1999), "Optimal robust control of a contactless brake system using an eddy current." Mechatronics, Pergamon, 9(6), 615-631. https://doi.org/10.1016/S0957-4158(99)00008-2
  12. Li, J.Y. and Zhu, S. (2018), "Versatile behaviors of electromagnetic shunt damper with a negative impedance converter", IEEE/ASME T. Mechatronics, 23(3), 1415-1424. DOI: 10.1109/TMECH.2018.2813307.
  13. Lu, X., Zhang, Q., Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct.Control Health Monit., 24(3), 1-17. https://doi.org/10.1002/stc.1882.
  14. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. D., 43(4), 507-527. https://doi.org/10.1002/eqe.2355.
  15. Niu, H., Chen, Z., Hua, X. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727.
  16. Palomera-Arias, R., Connor, J.J. and Ochsendorf, J.A. (2008), "Feasibility study of passive electromagnetic damping systems", J. Struct. Eng., 134(1), 164-170. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(164).
  17. Shen, W., Zhu, S. and Xu, Y. (2012), "An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors", Sensor. Actuat. A Phys., 180, 166-176. https://doi.org/10.1016/j.sna.2012.04.011.
  18. Shen, W., Zhu, S., Xu, Y.L. and Zhu, H.P. (2018), "Energy regenerative tuned mass dampers in high-rise buildings", Struct. Control Health Monit., 25(2), 1-18. https://doi.org/10.1002/stc.2072.
  19. Shen, W., Zhu, S., Zhu, H. and Xu, Y. L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18(3), 449-470. http://dx.doi.org/10.12989/sss.2016.18.3.449.
  20. Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A: Phys., 259, 14-33. https://doi.org/10.1016/j.sna.2017.03.026.
  21. Simeu, E. and Georges, D. (1996), "Modeling and control of an eddy current brake", Control Eng. Pract., 4(1), 19-26. https://doi.org/10.1016/0967-0661(95)00202-4.
  22. Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE T. Automat.Control, 47(10), 1648-1662. DOI: 10.1109/TAC.2002.803532.
  23. Sodano, H.A. and Bae, J.S. (2004), "Eddy current damping in structures", Shock Vib. Digest, 36, 469-478. https://doi.org/10.1177/0583102404048517
  24. Sodano, H.A., Bae, J.S., Inman, D.J. and Belvin, W.K. (2005), "Concept and model of eddy current damper for vibration suppression of a beam", J. Sound Vib., 288(4-5), 1177-1196. https://doi.org/10.1016/j.jsv.2005.01.016.
  25. Wang, Z., Chen, Z. and Wang, J. (2012), "Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism", J. Earthq. Eng. Eng. Vib., 11(3), 391-401. https://doi.org/10.1007/s11803-012-0129-x
  26. Wiederick, H.D., Gauthier, N., Campbell, D.A. and Rochon, P. (1987), "Magnetic braking: Simple theory and experiment", Am. J. Phys., 55(6), 500-503. https://doi.org/10.1119/1.15103.
  27. Yan, B., Zhang, X. and Niu, H. (2012), "Vibration isolation of a beam via negative resistance electromagnetic shunt dampers", J. Intel. Mat. Syst. Str., 23(6), 665-673. https://doi.org/10.1177/1045389X12437889.
  28. Zhu, H., Li, Y., Shen, W. and Zhu, S. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal Pr., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023.
  29. Zhu, S., Shen, W. and Xu, Y. (2012), "Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing", Eng. Struct., 34, 198-212. https://doi.org/10.1016/j.engstruct.2011.09.024.

Cited by

  1. Forced vibrations of high-rise buildings vol.869, 2019, https://doi.org/10.1088/1757-899x/869/5/052047