• Title/Summary/Keyword: electromagnetic damper

Search Result 54, Processing Time 0.027 seconds

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

Vibration Suppression of Beam by Using Electromagnetic Shunt Damper (전자기 션트 감쇠기를 이용한 빔의 진동억제에 관한 연구)

  • Cheng, Tai-Hong;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • In this paper the electromagnetic shunt damper was newly employed for vibration suppression of the flexible structures. The electromagnetic shunt damper consists of a coil and a permanent magnet. The ends of the coil were connected to the RLC shunt circuit. The numerical solutions of resonant frequency of the shunt circuits were calculated by using Pspice. The vibration and damping characteristics of the flexible beams with the electromagnetic shunt damper were investigated by tuning the circuit parameters. Also, the effect of the magnetic intensity on the shunt damping was studied with the variation of the gap between the aluminum beam and the permanent magnet. Present results show that the magnet shunt damper can be successfully applied to reduce the vibration of the flexible structures.

  • PDF

Investigation of the semi-active electromagnetic damper

  • Montazeri-Gh, Morteza;Kavianipour, Omid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.419-434
    • /
    • 2014
  • In this paper, the electromagnetic damper (EMD), which is composed of a permanent-magnet rotary DC motor, a ball screw and a nut, is considered to be analyzed as a semi-active damper. The main objective pursued in the paper is to study the two degrees of freedom (DOF) model of the semi-active electromagnetic suspension system (SAEMSS) performance and energy regeneration controlled by on-off and continuous damping control strategies. The nonlinear equations of the SAEMSS must therefore be extracted. The effects of the EMD characteristics on ride comfort, handling performance and road holding for the passive electromagnetic suspension system (PEMSS) are first analyzed and damping control strategies effects on the SAEMSS performance and energy regeneration are investigated next. The results obtained from the simulation show that the SAEMSS provides better performance and more energy regeneration than the PEMSS. Moreover, the results reveal that the on-off hybrid control strategy leads to better performance in comparison with the continuous skyhook control strategy, however, the energy regeneration of the continuous skyhook control strategy is more than that of the on-off hybrid control strategy (except for on-off skyhook control strategy).

Magnetic circuit optimization in designing Magnetorheological damper

  • Yazid, Izyan I.M.;Mazlan, Saiful A.;Kikuchi, Takehito;Zamzuri, Hairi;Imaduddin, Fitrian
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.869-881
    • /
    • 2014
  • This paper presents the materials analysis for combination of working modes of Magnetorheological (MR) damper. The materials were selected based on the optimum magnetic field strength at the effective areas in order to obtain a better design of MR damper. The design of electromagnetic circuit is one of the critical criteria in designing MR dampers besides the working mechanism and the types of MR damper. The increase in the magnetic field strength is an indication of the improvement in the damping performance of the MR damper. Eventually, the experimental test was performed under quasi-static loading to observe the performances of MR damper in shear mode, squeeze mode and mixed mode. The results showed that the increment of forces was obtained with the increased current due to higher magnetic flux density generated by electromagnetic coils. In general, it can be summarized that the combination of modes generates higher forces than single mode for the same experimental parameters throughout the study.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.

A study on the Application of Electromagnetic Type HMD for Vibration Control of Structure (구조물 진동제어를 위한 전자석구동 HMD의 응용에 관한 연구)

  • Choi, Hyun;Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Lee, Sang-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.280-285
    • /
    • 2000
  • With recent development of technology of high stiffness material and the structural design, the construction of high rise structures such as tall building, tower has increased. The more flexible and slender structure is vulnerable to the internal and external dynamic loads induced by earthquake, wind and traffic load. There have been great effort and many researches to minimize the influence of dynamic loads on the structure. The traditional and stable method, the application of the passive damper, is not able to comply with various dynamic loads, while the mass damper which active control technology is integrated can effectively comply with load types. Therefore, the application of active control of huge structures with AMD(Active mass damper) or HMD(Hybrid Mass damper) is increasing. Up to now, most of actuators are servomotor and hydraulic actuator. But it is known that the electromagnetic actuator applies non contacting control force, which makes the control system easier with no characteristic change depending on time. In this paper, Hybrid mass damper with electromagnetic actuator was designed and applied to building scaled structure. The performance of designed HMD tested by shake table test is included.

  • PDF

Enhance the damping density of eddy current and electromagnetic dampers

  • Li, Jin-Yang;Zhu, Songye;Shen, Jiayang
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • Over the past decades, a great variety of dampers have been developed and applied to mechanical, aerospace, and civil structures to control structural vibrations. This study is focused on two emerging damper types, namely, eddy current dampers (ECDs) and electromagnetic damper (EMDs), both of which are regarded as promising alternatives to commonly-applied viscous fluid dampers (VFDs) because of their similar mechanical behavior. This study aims to enhance the damping densities of ECDs and EMDs, which are typically lower than those of VFDs, by proposing new designs with multiple improvement measures. The design configurations, mechanisms, and experimental results of the new ECDs and EMDs are presented in this paper. The further comparison based on the experimental results revealed that the damping densities of the proposed ECD and EMD designs are comparable to those of market-available VFDs. Considering ECDs and EMDs are solid-state dampers without fluid leakage problems, the results obtained in this study demonstrate a great prospect of replacing conventional VFDs with the improved ECDs and EMDs in future large-scale applications.

Smart Control Techniques for Vibration Suppression of Stay Cable (사장 케이블 제진을 위한 스마트 제진 기법)

  • Jung Hyung-Jo;Park Chul-Min;Cho Sang-Won;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF