참고문헌
- C. T. Anh and D. T. Quyet, Long-time behavior for 2D non-autonomous g-Navier-Stokes equations, Ann. Polon. Math. 103 (2012), no. 3, 277-302. https://doi.org/10.4064/ap103-3-5
- C. T. Anh, D. T. Quyet, and D. T. Tinh, Existence and nite time approximation of strong solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 38 (2013), no. 3, 413-428. https://doi.org/10.1007/s40306-013-0023-2
- C. T. Anh and V. M. Toi, Stabilizing the long-time behavior of the Navier-Stokes-Voigt equations by fast oscillating-in-time forces, Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 177-185. https://doi.org/10.4064/ba8094-9-2017
- A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters-a reaction-diffusion paradigm, Evol. Equ. Control Theory 3(2014), no. 4, 579-594. https://doi.org/10.3934/eect.2014.3.579
- A. Azouani, E. Olson, and E. S. Titi, Continuous data assimilation using general inter-polant observables, J. Nonlinear Sci. 24 (2014), no. 2, 277-304. https://doi.org/10.1007/s00332-013-9189-y
- H.-O. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), no. 1, 85-102. https://doi.org/10.11650/twjm/1500558459
- J. Cyranka, P. B. Mucha, E. S. Titi, and P. Zgliczynski, Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow, Phys. D 369 (2018), 18-29. https://doi.org/10.1016/j.physd.2017.12.010
-
J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on
$R^2$ , Appl. Math. Comput. 215 (2009), no. 3, 1068-1076. https://doi.org/10.1016/j.amc.2009.06.035 - J. Jiang and Y. Hou, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (English Ed.) 31 (2010), no. 6, 697-708. https://doi.org/10.1007/s10483-010-1304-x
- J. Jiang, Y. Hou, and X. Wang, Pullback attractor of 2D nonautonomous g-Navier- Stokes equations with linear dampness, Appl. Math. Mech. (English Ed.) 32 (2011), no. 2, 151-166. https://doi.org/10.1007/s10483-011-1402-x
- J. Jiang and X. Wang, Global attractor of 2D autonomous g-Navier-Stokes equations, Appl. Math. Mech. (English Ed.) 34 (2013), no. 3, 385-394. https://doi.org/10.1007/s10483-013-1678-7
- J. Kalantarova and T. Ozsari, Finite-parameter feedback control for stabilizing the complex Ginzburg-Landau equation, Systems Control Lett. 106 (2017), 40-46. https://doi.org/10.1016/j.sysconle.2017.06.004
- V. K. Kalantarov and E. S. Titi, Finite-parameters feedback control for stabilizing damped nonlinear wave equations, in Nonlinear analysis and optimization, 115-133, Contemp. Math., 659, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/659/13193
- V. K. Kalantarov and E. S. Titi, Global stabilization of the Navier-Stokes-Voight and the damped nonlinear wave equations by finite number of feedback controllers, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 3, 1325-1345. https://doi.org/10.3934/dcdsb.2018153
- M. Kwak, H. Kwean, and J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl. 315 (2006), no. 2, 436-461. https://doi.org/10.1016/j.jmaa.2005.04.050
-
H. Kwean, The
$H^1$ -compact global attractor of two-dimensional g-Navier-Stokes equations, Far East J. Dyn. Syst. 18 (2012), no. 1, 1-20. - H. Kwean and J. Roh, The global attractor of the 2D g-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc. 20 (2005), no. 4, 731-749. https://doi.org/10.4134/CKMS.2005.20.4.731
- D. T. Quyet, Asymptotic behavior of strong solutions to 2D g-Navier-Stokes equations, Commun. Korean Math. Soc. 29 (2014), no. 4, 505-518. https://doi.org/10.4134/CKMS.2014.29.4.505
- D. T. Quyet and N. V. Tuan, On the stationary solutions to 2D g-Navier-Stokes equations, Acta Math. Vietnam. 42 (2017), no. 2, 357-367. https://doi.org/10.1007/s40306-016-0180-1
- J. C. Robinson, Innite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
- J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), no. 2, 452-484. https://doi.org/10.1016/j.jde.2004.08.016
- D. Wu and J. Tao, The exponential attractors for the g-Navier-Stokes equations, J. Funct. Spaces Appl. 2012 (2012), Art. ID 503454, 12 pp.