DOI QR코드

DOI QR Code

Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells

고효율 적층형 태양전지를 위한 유무기 페로브스카이트

  • Park, Ik Jae (Department of Materials Science & Engineering, Seoul National University) ;
  • Kim, Dong Hoe (Department of Nanotechnology & Advanced Materials Engineering, Sejong University)
  • 박익재 (서울대학교 재료공학부) ;
  • 김동회 (세종대학교 나노신소재공학과)
  • Received : 2019.06.10
  • Accepted : 2019.06.17
  • Published : 2019.06.30

Abstract

To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

Keywords

References

  1. S. Nowak, "Trends 2018 in Photovoltaic Applications," IEA International Energy Agency, Sweden, (2018)
  2. https://www.nrel.gov/pv/assets/images/efficiencychart.png
  3. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc. 131 [17] 6050-1 (2009) https://doi.org/10.1021/ja809598r
  4. M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest and K. Zhu, "Perovskite Ink with Wide Processing Window for Scalable High-Efficiency Solar Cells," Nat. Energy 2 [5] 17038 (2017) https://doi.org/10.1038/nenergy.2017.38
  5. H. S. K. W. S. Han, B. S. Choi, D. K. Oh, "차세대 고효율 태양전지 기술 동향," 전자통신동향분석 22 [5] 86-94 (2007) https://doi.org/10.22648/ETRI.2007.J.220509
  6. T. Leijtens, K. A. Bush, R. Prasanna and M. D. McGehee, "Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors," Nat. Energy 1 (2018)
  7. F. Sahli, J. Werner, B. A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. D. Leon and D. Sacchetto, "Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells with 25.2% Power Conversion Efficiency," Nat. Mater. 1 (2018)
  8. Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun, E.-P. Yao, S.-Y. Chang, S.-H. Bae, T. Kato, V. Bermudez and Y. Yang, "High-Performance Perovskite/Cu(in,Ga)Se2 Monolithic Tandem Solar Cells," Science 361 [6405] 904-8 (2018) https://doi.org/10.1126/science.aat5055
  9. D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, F. Zhang, Z. Li, H. Lu, M. F. A. M. van Hest, J. J. Berry, L. M. Mansfield, Y. Huang, Y. Yan and K. Zhu, "Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with Cigs," Joule (2019)
  10. G. E. Eperon, T. Leijtens, K. A. Bush, R. Prasanna, T. Green, J. T.-W. Wang, D. P. McMeekin, G. Volonakis, R. L. Milot, R. May, A. F. Palmstrom, D. J. Slotcavage, R. A. Belisle, J. B. Patel, E. S. Parrott, S. R. J., W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustion, L. M. Herz, M. B. Johnston, M. D. McGehee and H. J. Snaith, "Perovskite-Perovskite Tandem Photovoltaics with Optimized Bandgaps," Science aaf 9717 (2016)
  11. A. F. Palmstrom, G. E. Eperon, T. Leijtens, R. Prasanna, S. N. Habisreutinger, W. Nemeth, E. A. Gaulding, S. P. Dunfield, M. Reese, S. Nanayakkara, T. Moot, J. Werner, J. Liu, B. To, S. T. Christensen, M. D. McGehee, M. F. A. M. van Hest, J. M. Luther, J. J. Berry and D. T. Moore, "Enabling Flexible All-Perovskite Tandem Solar Cells," Joule (2019)
  12. J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al-Jassim, M. F. A. M. van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan and K. Zhu, "Carrier Lifetimes of ≫1 Μs in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells," Science 364 [6439] 475-9 (2019) https://doi.org/10.1126/science.aav7911
  13. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Sci. Rep. 2 591 (2012) https://doi.org/10.1038/srep00591
  14. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science 338 [6107] 643-7 (2012) https://doi.org/10.1126/science.1228604
  15. T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong and M. Stocks, "Rubidium Multication Perovskite with Optimized Bandgap for Perovskite Silicon Tandem with over 26% Efficiency," Adv. Energy Mater. 7 [14] 1700228 (2017) https://doi.org/10.1002/aenm.201700228
  16. E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa and M. D. McGehee, "Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics," Chem. Sci. 6 [1] 613-7 (2015) https://doi.org/10.1039/C4SC03141E
  17. T. C.-J. Yang, P. Fiala, Q. Jeangros and C. Ballif, "High-Bandgap Perovskite Materials for Multijunction Solar Cells," Joule 2 [8] 1421-36 (2018) https://doi.org/10.1016/j.joule.2018.05.008
  18. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz and H. J. Snaith, "A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells," Science 351 [6269] 151-5 (2016) https://doi.org/10.1126/science.aad5845
  19. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent and M. D. McGehee, "23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability," Nat. Energy 2 [4] 17009 (2017) https://doi.org/10.1038/nenergy.2017.9
  20. J. Zheng, C. F. J. Lau, H. Mehrvarz, F.-J. Ma, Y. Jiang, X. Deng, A. Soeriyadi, J. Kim, M. Zhang, L. Hu, X. Cui, D. S. Lee, J. Bing, Y. Cho, C. Chen, M. A. Green, S. Huang and A. W. Y. Ho-Baillie, "Large Area Efficient Interface Layer Free Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell with over 20% Efficiency," Energy Environ. Sci. 11 [9] 2432-43 (2018) https://doi.org/10.1039/c8ee00689j
  21. I. J. Park, J. H. Park, S. G. Ji, M.-A. Park, J. H. Jang and J. Y. Kim, "A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform," Joule 3 [3] 807-18 (2019) https://doi.org/10.1016/j.joule.2018.11.017
  22. J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee and T. Buonassisi, "A 2-Terminal Perovskite/Silicon Multijunction Solar Cell Enabled by a Silicon Tunnel Junction," Appl. Phys. Lett., 106 [12] 121105 (2015) https://doi.org/10.1063/1.4914179
  23. J. Werner, C. H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen and C. Ballif, "Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 Cm(2)," J. Phys. Chem. Lett. 7 [1] 161-6 (2016) https://doi.org/10.1021/acs.jpclett.5b02686
  24. J. Werner, L. Barraud, A. Walter, M. Brauninger, F. Sahli, D. Sacchetto, N. Tetreault, B. Paviet-Salomon, S.-J. Moon, C. Allebe, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen and C. Ballif, "Efficient near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells," ACS Energy Lett. 1 [2] 474-80 (2016) https://doi.org/10.1021/acsenergylett.6b00254
  25. K. A. Bush, S. Manzoor, K. Frohna, Z. J. Yu, J. A. Raiford, A. F. Palmstrom, H.-P. Wang, R. Prasanna, S. F. Bent, Z. C. Holman and M. D. McGehee, "Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite-Silicon Tandem Solar Cells," ACS Energy Lett. 2173-80 (2018) https://doi.org/10.1021/acsenergylett.8b01201
  26. B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P. N. Rudd, Z. Holman and J. Huang, "Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%," Joule 3 [1] 177-90 (2019) https://doi.org/10.1016/j.joule.2018.10.003
  27. F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis, "Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells," J. Am. Chem. Soc. 136 [22] 8094-9 (2014) https://doi.org/10.1021/ja5033259
  28. J. Im, C. C. Stoumpos, H. Jin, A. J. Freeman and M. G. Kanatzidis, "Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials Ch3nh3sn1-Xpbxi3," J. Phys. Chem. Lett. 6 [17] 3503-9 (2015) https://doi.org/10.1021/acs.jpclett.5b01738
  29. T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar and N. Mathews, "Formamidinium Tin-Based Perovskite with Low Eg for Photovoltaic Applications," J. Mater. Chem. A 3 [29] 14996-5000 (2015) https://doi.org/10.1039/C5TA00190K
  30. S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo and S. I. Seok, "Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through Snf2-Pyrazine Complex," J. Am. Chem. Soc. 138 [12] 3974-7 (2016) https://doi.org/10.1021/jacs.6b00142
  31. W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C. R. Grice, C. Wang, Y. Xiao, A. J. Cimaroli, R. J. Ellingson, N. J. Podraza, K. Zhu, R.-G. Xiong and Y. Yan, "Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide," J. Am. Chem. Soc. 138 [38] 12360-3 (2016) https://doi.org/10.1021/jacs.6b08337
  32. R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H. G. Boyen, M. F. Toney and M. D. McGehee, "Band Gap Tuning Via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics," J. Am. Chem. Soc. 139 [32] 11117-24 (2017) https://doi.org/10.1021/jacs.7b04981
  33. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong and Y. Yan, "Low-Bandgap Mixed Tin-Lead Iodide Perovskite Absorbers with Long Carrier Lifetimes for All-Perovskite Tandem Solar Cells," Nat. Energy 2 [4] 17018 (2017) https://doi.org/10.1038/nenergy.2017.18
  34. D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, X. Zhao, G. Fang, R.-G. Xiong, K. Zhu and Y. Yan, "Efficient Two-Terminal All-Perovskite Tandem Solar Cells Enabled by High-Quality Low-Bandgap Absorber Layers," Nat. Energy 3 [12] 1093-100 (2018) https://doi.org/10.1038/s41560-018-0278-x
  35. T. Leijtens, R. Prasanna, K. A. Bush, G. E. Eperon, J. A. Raiford, A. Gold-Parker, E. J. Wolf, S. A. Swifter, C. C. Boyd, H.-P. Wang, M. F. Toney, S. F. Bent and M. D. McGehee, "Tin-Lead Halide Perovskites with Improved Thermal and Air Stability for Efficient All-Perovskite Tandem Solar Cells," Sustainable Energy Fuels 2 [11] 2450-9 (2018) https://doi.org/10.1039/c8se00314a
  36. T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney and M. D. McGehee, "Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites," ACS Energy Lett. 2 [9] 2159-65 (2017) https://doi.org/10.1021/acsenergylett.7b00636
  37. C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M. M. Junda, C. Wang, C.-S. Jiang, M. Al-Jassim, R. J. Ellingson, N. J. Podraza, K. Zhu and Y. Yan, "Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells," Adv. Energy Mater. 9 [3] 1803135 (2019) https://doi.org/10.1002/aenm.201803135
  38. J. Zheng, H. Mehrvarz, F.-J. Ma, C. F. J. Lau, M. A. Green, S. Huang and A. W. Y. Ho-Baillie, "21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 Cm2," ACS Energy Lett. 3 [9] 2299-300 (2018) https://doi.org/10.1021/acsenergylett.8b01382
  39. C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee and M. Gratzel, "Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and Cigs," Energy Environ. Sci. 8 [3] 956-63 (2015) https://doi.org/10.1039/C4EE03322A
  40. Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R. Catchpole and K. J. Weber, "Monolithic Perovskite/Silicon-Homojunction Tandem Solar Cell with over 22% Efficiency," Energy Environ. Sci. 10 [11] 2472-9 (2017) https://doi.org/10.1039/c7ee02288c
  41. F. Sahli, B. A. Kamino, J. Werner, M. Brauninger, B. Paviet-Salomon, L. Barraud, R. Monnard, J. P. Seif, A. Tomasi, Q. Jeangros, A. Hessler-Wyser, S. De Wolf, M. Despeisse, S. Nicolay, B. Niesen and C. Ballif, "Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction," Adv. Energy Mater. 8 [6] 1701609 (2018) https://doi.org/10.1002/aenm.201701609
  42. S. Albrecht, M. Saliba, J. P. Correa Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel and B. Rech, "Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells Processed at Low Temperature," Energy Environ. Sci. 9 [1] 81-8 (2016) https://doi.org/10.1039/C5EE02965A
  43. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu and Y. Yan, "Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%," ACS Energy Lett. 3 [2] 305-6 (2018) https://doi.org/10.1021/acsenergylett.7b01287
  44. A. Rajagopal, Z. Yang, S. B. Jo, I. L. Braly, P. W. Liang, H. W. Hillhouse and A. K. Jen, "Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage," Adv. Mater. 29 [34] (2017)
  45. D. Forgacs, L. Gil-Escrig, D. Perez-Del-Rey, C. Momblona, J. Werner, B. Niesen, C. Ballif, M. Sessolo and H. J. Bolink, "Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells," Adv. Energy Mater. 7 [8] 1602121 (2017) https://doi.org/10.1002/aenm.201602121
  46. F. Jiang, T. Liu, B. Luo, J. Tong, F. Qin, S. Xiong, Z. Li and Y. Zhou, "A Two-Terminal Perovskite/Perovskite Tandem Solar Cell," J. Mater. Chem. A 4 [4] 1208-13 (2016) https://doi.org/10.1039/C5TA08744A