References
- Akbas, S.D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akgoz, B. and Civalek, O. (2014), "A new trigonometric beam model for buckling of strain gradient microbeams", J. Mech. Sci., 81, 88-94. https://doi.org/10.1016/j.ijmecsci.2014.02.013.
- Akgoz, B. and Civalek, O. (2015a), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
- Akgoz, B. and Civalek, O. (2015b), "A novel microstructuredependent shear deformable beam model", J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015.
- Barati, M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
- Barati, M.R. and Zenkour, A.M. (2018a), "Analysis of postbuckling of graded porous gpl-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2017.1400622.
- Barati, M.R. and Zenkour, A.M. (2018b), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444235.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (cntr) and functionally graded shells and plates based on fsdt via discrete singular convolution method", Compos. Part B, 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Ebrahimi, F. and Barati, M.R. (2017a), "Flexural wave propagation analysis of embedded s-fgm nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arabian J. Sci. Eng., 42, 1715-1726. https://doi.org/10.1007/s13369-016-2266-4.
- Ebrahimi, F. and Barati, M.R. (2017b), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Themral Stresses, 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25, 350-359. https://doi.org/10.1080/15376494.2016.1255830.
- Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Express, 4. https://doi.org/10.1088/2053-1591/aa55b5.
- Ebrahimi, F. and Dabbagh, A. (2017b), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", European Phys. J. Plus, 132, 153. https://doi.org/10.1140/epjp/i2017-11366-3.
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Themral Stresses, 40, 535-547. https://doi.org/10.1080/01495739.2016.1230483.
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2018), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 24, 3809-3818. https://doi.org/10.1177%2F1077546317711537. https://doi.org/10.1177/1077546317711537
- Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., 7, 1-11. https://doi.org/10.12989/anr.2019.7.1.001.
- Feng, C., Kitipornchai, S. and Yang, J. (2017a), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (gpls)", Compos. Part B, 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
- Feng, C., Kitipornchai, S. and Yang, J. (2017b), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (gpls)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
- Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65, 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64, 391-402. http://dx.doi.org/10.12989/sem.2017.64.4.391.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54, 1061-1073. http://dx.doi.org/10.12989/sem.2015.54.6.1061.
- Reddy, R.M.R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-gpl reinforced composite plates with different boundary conditions", Aerosp. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019.
- Rout, M. and Karmakar, A. (2018), "Free vibration of rotating pretwisted cnts-reinforced shallow shells in thermal environment", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2018.1452317.
- Shen, H.S. and Xiang, Y. (2014), "Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. B, 67, 50-61. https://doi.org/10.1016/j.compositesb.2014.06.020.
- Song, M., Kitipornchai, S. and Yang, J. (2017a), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
- Song, M., Yang, J. and Ktipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. B, 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043
- Song, M., Yang, J., Kitipornchai, S. and Zhu, W. (2017b), "Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates", J. Mech. Sci., 131, 345-355. https://doi.org/10.1016/j.ijmecsci.2017.07.017.
- Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018a), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results in Phys., 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.
- Wang, Q., Cui, X., Qin, B. and Liang, Q. (2017), "Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions", Compos. Struct., 182, 364-379. https://doi.org/10.1016/j.compstruct.2017.09.043
- Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018c), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", J. Struct. Stability Dynam., 18, https://doi.org/10.1142/S0219455418500402.
- Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018d), "Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (gpl)", Compos. Struct., 202, 38-46. https://doi.org/10.1016/j.compstruct.2017.10.005.
- Wang, Y., Feng, C., Zhao, Z., Lu, F. and Yang, J. (2018b), "Torsional buckling of graphene platelets (gpls) reinforced functionally graded cylindrical shell with cutout", Compos. Struct., 197, 72-79. https://doi.org/10.1016/j.compstruct.2018.05.056
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Zhang, L., Song, Z. and Liew, K. (2015), "Nonlinear bending analysis of fg-cnt reinforced composite thick plates resting on pasternak foundations using the element-free imls-ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.
- Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (gpls)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044.
- Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
- Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64, 145-153. http://dx.doi.org/10.12989/sem.2017.64.2.145.
Cited by
- Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs vol.49, pp.1, 2019, https://doi.org/10.1080/15397734.2019.1666722
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures vol.77, pp.5, 2019, https://doi.org/10.12989/sem.2021.77.5.571
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157