DOI QR코드

DOI QR Code

한국 전나무(Abies holophylla), 일본 전나무(A. firma, A. homolepis), 그리고 법정 보호 전나무의 잎 형태적 특성 및 엽록체 DNA 분석

Morphological Characteristics of Needle Leaves and Analysis of Abies species based on Chloroplast DNA Sequences

  • Ahn, Chang Ho (Division of Forest Science, Kangwon National University) ;
  • Choi, Yong Eui (Division of Forest Science, Kangwon National University) ;
  • Park, Wan Geun (Division of Forest Science, Kangwon National University) ;
  • Han, Jung Yeon (Division of Forest Science, Kangwon National University) ;
  • Kwak, Yoo Shin (Division of Forest Science, Kangwon National University) ;
  • Kim, Se Chang (Division of Forest Science, Kangwon National University) ;
  • Park, Chan Woo (Forest Research Institute, Kangwon National University)
  • 투고 : 2019.01.28
  • 심사 : 2019.05.03
  • 발행 : 2019.06.30

초록

본 연구는 한국 전나무(Abies holophylla) 및 2종의 일본 전나무(A. firma 및 A. homolepis), 그리고 우리나라 법정 보호 전나무 간의 구별을 위한 기초자료를 제공하기 위하여 수행하였다. 각각 조사대상목의 잎 끝의 형태적 특성을 분석한 결과, A. holophylla는 뾰족한 형태를 보였고, 반면에 A. firma와 A. homolepis는 미요두(微凹頭) 형태를 보였다. 그리고 법정 보호 전나무의 잎 끝은 원두(圓頭) 형태를 보였다. 각각 전나무 종들 간의 잎 기공수를 비교한 결과, A. holophylla와 A. firma의 잎 기공수는 통계적으로 유의한 차이가 없었으며, A. homolepis와 법정 보호 전나무의 잎 기공수는 매우 유사한 것으로 보였다. 엽록체 DNA 바코드(matK, atpF-atpH, rpoC2-rps2, rpoC1, psbA-trnH)를 이용하여 전나무 종간 유전적 차이를 비교 분석하였다. 그 결과, atpF-atpH와 psbA-trnH 영역에서 A. firma와 다른 전나무 종들 간의 분명한 염기서열의 차이가 있었다. 하지만, 종명이 분명히 다른 한국 전나무(A. holophylla)와 일본 전나무(A. homolepis)간에 엽록체 염기 서열차이가 전혀 없으며, 또한 법정 보호 전나무와도 차이가 없었다. 따라서 이들 종간의 유전적 차이에 대한 구체적인 연구의 진행이 필요하다고 본다.

The aim of this study was to provide the basic information necessary to identify Korean fir (Abies holophylla), momi fir (A. firma), and Nikko fir (A. homolepis), and other fir trees planted in South Korea that are protected by law. Analysis of the morphological characteristics of the needles from each sample was investigated. The shape of the needle-leaf tip from A. holophylla was acute, whereas that from A. firma and A. homolepis was emarginate and that from the protected fir trees was obtuse. The number of stomata on the needles was not significantly different between A. holophylla and A. firma, and the number of stomata on the needles from A. homolepis and the protected fir trees were highly similar. In addition, the genetic differences among the Abies species were analyzed using the sequences of five chloroplast DNA regions-matK, atpF-atpH, rpoC2-rps2, rpoC1, and psbA-trnH.The atpF-atpH and psbA-trnH regions were useful for discriminating A. firma from the other species, but there were no differences among A. holophylla, A. homolepis, and the protected fir trees. The same chloroplast sequences were found in both A. holophylla and A. homolepis, which suggests that additional genetic studies might be necessary to identify the Abies species planted in both South Korea and Japan.

키워드

HOMHBJ_2019_v108n2_200_f0001.png 이미지

Figure 1. Leaf tips occurring in the genus Abies.

HOMHBJ_2019_v108n2_200_f0002.png 이미지

Figure 2. (A) Stomatal pattern and distribution in abaxial surface of the needle-like leaf of A. holophylla. The square equals 4 mm2. (B) Bar graph of stomatal density. The graph shows the number of stomata per 4 mm2. Error bars are standard errors. Different letters indicate significant differences among samples according to the Tukey’s test at P ≤ 0.05.

Table 1. Location and of sampled fir trees in Korea.

HOMHBJ_2019_v108n2_200_t0001.png 이미지

Table 2. List of primers and nucleotide sequences.

HOMHBJ_2019_v108n2_200_t0002.png 이미지

Table 3. Gene size and G+C content of the matK, atpF-atpH, rpoC2-rps2, rpoC1, and psbA-trnH region in A. firma.

HOMHBJ_2019_v108n2_200_t0003.png 이미지

Table 4. Alignment matrix for each sequence region of the atpF-atpH. Dots indicate the same nucleotide as the reference A. firma (FJ899565).

HOMHBJ_2019_v108n2_200_t0004.png 이미지

Table 5. Alignment matrix for each sequence region of the psbA-trnH. Dots indicate the same nucleotide as the reference A. firma (FJ899565).

HOMHBJ_2019_v108n2_200_t0005.png 이미지

참고문헌

  1. Ahn, C.H., Kim, Y.S., Lim, S., Yi J.S. and Choi, Y.E. 2011. Random amplified polymorphic DNA (RAPD) analysis and RAPD-derived sequence characterized amplified regions (SCAR) marker development to identify Chinese and Korean ginseng. Journal of Medicinal Plants Research 5(18): 4487-4492.
  2. Ahn, J.K. 1997. Needle characteristics and genetic variation of Abies holophylla populations in South Korea based on Isozyme. (Dissertation). Daegu. Kyungpook National University.
  3. CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794-12797 https://doi.org/10.1073/pnas.0905845106
  4. Cho, H.J., Bae, K.H., Lee, C.S. and Lee, C.H. 2004. Species composition and structure of the evergreen coniferous forest vegetation of the Subalpine area (South Korea). Journal of Korean Forest Society 93(5): 372-379.
  5. Cho, H.J., Bae. G.H., Park, S.G. and Lee, S.W. 2013. Korea Big Tree. Daejeon. Korea Green Promotion Agency. pp. 447.
  6. Dorken, V.M. and Nimsch, H. 2018. A monograph of leaf characters in the genus Abies (Abietiodae, Pinaceae). Verlag Kessel, Germany.
  7. Forestry Research Institute. 1992. Illustrated woody plants of Korea. pp. 562.
  8. Ghimire, B., Lee, C., Yang, J. and Heo, K. 2015. Comparative leaf anatomy of some species of Abies and Picea (Pinaceae). Acta Botanica Brasilica 29(3): 346-353. https://doi.org/10.1590/0102-33062014abb0009
  9. Higgins, D.G., Bleasby, A.J. and Fuchs, R. 1992. CLUSTAL V: improved software for multiple sequence alignment. Computer applications in the biosciences 8(2): 189-191.
  10. Kim, I.S. and Hyun, J.O. 1999. Genetic variation in the natural population of Abies holophylla Max. based on RAPD analysis. Journal of Korean Forest Society 88(3): 408-418.
  11. Kim, S.H., Lee, S.Y., Cho, S.M., Hong, C.Y., Park, M.J. and Choi I.G. 2016. Evaluation on Anti-fungal Activity and Synergy Effects of Essential Oil and Their Constituents from Abies holophylla. Journal of the Korean Wood Science and Technology 44(1): 113-123. https://doi.org/10.5658/WOOD.2016.44.1.113
  12. Kim, Y.M., Hong, K.N., Lee, J.W. and Yang, B.H. 2014. Genetic variation of Abies holophylla populations in South Korea based on ISSR markers. Journal of Korean Forest Society 103(2): 182-188. https://doi.org/10.14578/JKFS.2014.103.2.182
  13. Kormutak, A., Vookova, B., Ziegenhagen, B., Kwon, H.Y. and Hong, Y.P. 2004. Chloroplast DNA variation in some representatives of the Asian, North American and mediterranean Firs (Abies spp). Silvae Genetica 53(3): 99-104. https://doi.org/10.1515/sg-2004-0018
  14. Lacourse, T., Beer, K.W. and Hoffman, E.H. 2016. Identification of conifer stomata in pollen samples from western North America. Review of Palaeobotany and Palynology 232: 140-150. https://doi.org/10.1016/j.revpalbo.2016.05.005
  15. Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science 65(302): 1-7. https://doi.org/10.1051/forest:2008999
  16. Lee, T.B. 1987. Dendrology. Hyangmoon Pub. Co. Seoul. Korea. pp. 331.
  17. Lee, J.H. and Hong, S.K. 2009. Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana activities of essential oils from Abies holophylla and Abies koreana. Journal of microbiology and biotechnology 19(4): 372-377. https://doi.org/10.4014/jmb.0811.630
  18. Li, W., Chen, C., Bai, G., Li, B., Chen, H., Zhou, Y. and Li, S. 2018. The complete chloroplast genome sequence of Abies chensiensis (Pinaceae: Abietoideae), an endangered species endemic to China. Mitochondrial DNA. 3(2): 984-985. https://doi.org/10.1080/23802359.2018.1507636
  19. Park, C.W., Jeong, M.A. and Lee, Y.H. 2015. A Study on Reasons for Planting Abies holophylla by Imperial Japan in Korean temples. Journal of the Korean Institute of Landscape Architecture 43(4): 50-61. https://doi.org/10.9715/KILA.2015.43.4.050
  20. Park, C.W., Jeong, M.A. and Lee, Y.H. 2017. The Study on Abies holophylla by Japan and Korea in temple, public sites and the historic sites for Anti-Japan Fighter. Journal of Korean Forest Society 106(1): 87-99. https://doi.org/10.14578/JKFS.2017.106.1.87
  21. Parks, M., Cronn, R. and Liston, A. 2009. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology. 7:84. https://doi.org/10.1186/1741-7007-7-84
  22. Semerikova, S.A. and Semerikov, V.L. 2014. Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Russian Journal of Genetics. 50: 7-19. https://doi.org/10.1134/S1022795414010104
  23. Shao, Y.Z., Hu, J.T., Fan, P.Z., Liu, Y.Y. and Wang, Y.H. 2018. The complete chloroplast genome sequence of Abies beshanzuensis, a highly endangered fir species from south China. 3(2): 921-922. https://doi.org/10.1080/23802359.2018.1502638
  24. Suyama, Y., Yoshimaru, H. and Tsumura, Y. 2000. Molecular phylogenetic position of Japanese Abies (Pinaceae) based on chloroplast DNA sequences. Molecular Phylogenetics and Evolution. 16: 271-277. https://doi.org/10.1006/mpev.2000.0795
  25. Uehara, K.N. 1959. An Arboretum Dictionary. Ariakeshowbou. pp. 1300.
  26. Yi, D.K., Choi, K., Joo, M., Yang, J.C., Mustafina, F.U., Han, J.S., Son, D.C., Chang, K.S., Shin, C.H. and Lee, Y.M. 2016. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae). Journal of Asia-Pacific Biodiversity 9: 245-249. https://doi.org/10.1016/j.japb.2016.03.014
  27. Yi, D.K., Yang, J.C., So, S., Joo, M., Kim, D.K., Shin, C.H., Lee, Y.M. and Choi, K. 2016. The complete plastid genome sequence of Abies koreana (Pinaceae: Abietoideae). Mitochondrial DNA. 27(4): 2351-2353 https://doi.org/10.3109/19401736.2015.1025260