DOI QR코드

DOI QR Code

Changes in Composition and Structure of Forest Vegetation of Apsan Park, Daegu Metropolitan City

대구광역시 앞산공원 산림식생의 조성 및 구조 변화

  • Oh, Jeong Hak (Urban Forests Research Center, National Institute of Forest Science) ;
  • Kim, Jun-Soo (Nature and Forest Research Institute) ;
  • Kim, Hak Yun (Department of Global Environment, Keimyung University) ;
  • Cho, Hyun Je (Nature and Forest Research Institute)
  • Received : 2019.03.06
  • Accepted : 2019.04.02
  • Published : 2019.06.30

Abstract

The aim of our study was to identify the changing trends in the composition, structure, and spatial distribution of forest vegetation in Apsan Park, a representative urban forest in Daegu, South Korea. A vegetation survey was conducted in 1997 and 2016 using phytosociological methods, and a detailed vegetation map was created using the physiognomic dominant species. There were 22 vegetation types in both 1997 and 2016, but two of those types increased and two decreased. The total coverage per unit area ($100m^2$) of the component vegetation species increased from 163% in 1997 to 182% in 2016, and natural vegetation tended to be more than twice that of artificial vegetation. The average number of species decreased by seven from 25 in 1997 to 18 in 2016. Species diversity (H') increased only slightly from 1,654 in 1997 to 1,680 in 2016, while species dominance (D) decreased by 9% from 0.304 in 1997 to 0.276 in 2016. The similarity in the composition of the forest vegetation was about 78%, which was nearly the same. The life form spectrums of vascular plants changed from '$G-R_5-D_4-e$' in 1997 to '$MM-R_5-D_4-e$' in 2016 and the central dormancy type changed from geophytes (G) to megaphanerophytes (MM). The spatial distribution of the forest vegetation was reduced by approximately four times that of artificial vegetation. The number of forest landscape elements (patches) increased from 269 in 1997 to 294 in 2016, while the average area decreased by 12% from 5.8 ha in 1997 to 5.1 ha in 2016.

대구광역시의 대표적 도시숲인 앞산공원을 대상으로 1997년과 2016년에 식물사회학적 방법으로 식생조사를 실시하고 상관 우점종에 의한 정밀식생도를 작성하여 산림식생의 조성, 구조 및 공간적 분포 변화 경향을 분석하였다. 분석결과, 식생유형의 개수는 1997년과 2016년 모두 22개로 동일하였으나 그 구성 종류에 있어서는 2개 유형이 증가하고 2개 유형은 감소하였다. 산림식생 구성종의 단위면적당($/100m^2$) 총피도는 1997년 약 163%에서 2016년 약 182%로 약 11%가 증가하였으며, 자연식생이 인공식생에 비하여 두 배 이상 높은 경향이었다. 평균 출현종수는 1997년 약 25종에서 2016년 약 18종으로 7종이 감소하였다. 종다양도(H')는 1997년 1.654에서 2016년 1.680으로 미미하게 증가하였으나, 종우점도(D)는 1997년 0.304에서 2016년 0.276으로 약 9%가 감소하였다. 전체 산림식생의 구성적 유사도는 약 78%로 종구성적 특성이 거의 동일한 것으로 나타났으며, 생활형 조성은 1997년 '$G-R_5-D_4-e$'에서 2016년 '$MM-R_5-D_4-e$'로 휴면형의 중심형이 과거 지중식물(G)에서 대형지상식물(MM)로 변화된 경향이었다. 산림식생의 공간 분포 면적은 인공식생이 자연식생에 비해 약 4배 이상 높은 감소율을 보였다. 산림경관 요소(패치)의 개수는 1997년 269개에서 2016년 294개로 약 9%가 증가한 반면, 그 평균 크기는 1997년 5.8 ha에서 2016년 5.1 ha로 약 12%가 감소된 경향이었다.

Keywords

HOMHBJ_2019_v108n2_177_f0001.png 이미지

Figure 1. Location of the study site and field sample plots (black dots).

HOMHBJ_2019_v108n2_177_f0002.png 이미지

Figure 2. Changes in life-forms composition (dormancy, radicoid, disseminule, and growth forms) based on percentage of number of species in 1997 and 2016.

HOMHBJ_2019_v108n2_177_f0003.png 이미지

Figure 3. Jaccard similarity percentages of constituent species in major 18 types of forest vegetation in 1997 and 2016. Abbreviation of forest vegetation types were shown Table 1.

HOMHBJ_2019_v108n2_177_f0004.png 이미지

Figure 4. A detailed forest vegetation map of Apsan park (Abbreviations of the name for forest vegetation types were shown Table 1).

Table 1. Comparison of the forest vegetation types (based on physiognomy of the uppermost dominant species) in 1997 and 2016.

HOMHBJ_2019_v108n2_177_t0001.png 이미지

Table 2. Comparison of the average total coverage (%) by vegetation strata for the forest vegetation types in 1997 and 2016.

HOMHBJ_2019_v108n2_177_t0002.png 이미지

Table 3. Changes in the relative importance values of the major plant species of the forest vegetation types in 1997 and 2016.

HOMHBJ_2019_v108n2_177_t0003.png 이미지

Table 4. Comparison of species diversity indices among major 17 types of forest vegetation in 1997 and 2016.

HOMHBJ_2019_v108n2_177_t0004.png 이미지

Table 5. Indicator species analysis (IndVal) of the component species of forest vegetation in 1997 and 2016. Only species showing significant indication value (p<0.0005) are shown.

HOMHBJ_2019_v108n2_177_t0005.png 이미지

Table 6. Change of spatial distribution area, number of patches, and average size of patches by forest vegetation types of Apsan park in the year 1997 and 2016.

HOMHBJ_2019_v108n2_177_t0006.png 이미지

References

  1. Achard, F. 2009. Vital forest graphics. Arendal, Norway: UNEP/GRID-Arendal. http://www.grida.no/_res/site/file/publication/vital_forest_graphics.pdf(2019.2.15.).
  2. Bergstedt, J. 1997. Theory of nature conservation. In: Handbook Applied Biotope Protection II-3, 10. Erg.Lfg. 10(97): 3-10.
  3. Braun-Blanquet, J. 1964. Plant Sociology, Essentials of Vegetation Science. 3rd ed. Springer-Verlag. Wien, New York, USA. pp. 865.
  4. Brower, J.E. and Zar, J.H. 1977. Field and Laboratory Methods for General Ecology. Wm. C. Brown Company. Iowa, USA. pp. 288.
  5. Buell, M.F., Langford, A.N., Davidson, D.W. and Ohmann, L.F. 1966. The upland forest continuum in northern New Jersey. Ecology 47: 416-432. https://doi.org/10.2307/1932981
  6. Cho, J.H., Park, C.R., Oh, J.H., Kim, J.S. and Cho, H.J. 2016. Changes in Vegetation Characteristics Over Time in the Isolated Forests of the Urban Areas: A Case Study on the Mt. Hwangyeong, Busan Metropolitan City. Journal of Korean Forest Society 105(3): 284-293. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2016.105.3.284
  7. Cox, G.W. 1996. Laboratory Manual of General Ecology. 7th ed. William C. Brown Company Publishers, Dubuque, Iowa. pp. 278.
  8. Curtis, J.T. and Mcintosh, R.P. 1951. An upland forest continuum in the prairie-forest border region of Wis-consin. Ecology 32:476-498. https://doi.org/10.2307/1931725
  9. Daegu metropolitan city. 2019. http://www.daegu.go.kr/cts/index.do(2019.2.18.).
  10. Dufrene, M. and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67(3): 345-366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
  11. Feng, Q., Liu, J. and Gong, J. 2015. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sensing 7(1): 1074-1094. https://doi.org/10.3390/rs70101074
  12. Han, Y.G., Jung, S.H. and Kwon, O.S. 2016. How to utilize vegetation survey using drone image and image analysis software. Journal of Ecology and Environment 41(1):18. (in Korean with English abstract)
  13. Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., Takahashi, Y. and Marciano, J.J. 2018. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Computers and Electronics in Agriculture 144: 80-85. https://doi.org/10.1016/j.compag.2017.11.027
  14. Jaccard, P. 1901. Distribution of alpine flora in the Dranses basin and in some neighboring regions. Bulletin of the Vaudoise Society of Natural Sciences 37: 241-272.
  15. Kim, H.Y. and Cho, H.J. 2017. Vegetation Composition and Structure of Sogwang-ri Forest Genetic Resources Reserve in Uljin-gun, Korea. Korean Journal of Environment and Ecology 31(2): 188-201. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2017.31.2.188
  16. Korea Forest Service. 2018. Korean Plant Names Index. http://www.nature.go.kr/kpni/index.do (2019.1.12.).
  17. Korea Meteorological Administration. 2018. Climatological data. http://www.kma.go.kr (2018. 2. 11.).
  18. Kuchler, A.W. and Zonneveld, I.S. 1988. Vegetation mapping. Dr W. Junk, Dordrecht. pp. 635.
  19. Lee, H.Y., Park, I.H., Cho, K.J. and Jang, G.S. 2010. A Study on the Damage Condition of the Major Trail in Apsan Park, Daegu Metropolitan City. Proceedings of the 2010 Meeting of Korean Institute of Landscape Architecture 2010: 183-186.
  20. Lee, J.E., Shin, J.K., Kim, D.K. and Yun, C.W. 2018. Classification of Forest Vegetation for Forest Genetic Resource Reserve Area in Heuksando sland. Korean Journal of Environment and Ecology 32(3): 289-302. (in Korean with a English abstract) https://doi.org/10.13047/KJEE.2018.32.3.289
  21. Lee, K.J., Song, K.J. and Cho, W. 1994. Changes of the Plant Community Structure during the Twenty-two Years (1972-1993) in Forest of Mt. Kwanak. Journal of Korean Institute of Landscape Architecture 22(3): 79-90. (in Korean with English abstract)
  22. Lee, K.J., Choi, J.W. and Noh, T.H. 2012. Change of the Plant Community Structure during the Thirty-nine Years (1972-2010) in Forest of Mt. Kwanak. Proceedings of the 2010 Conference of Korean Society of Environment and Ecology 22(1): 68-72.
  23. Lee, T.B. 2003. Coloured flora of Korea, Hyangmunsa press, Seoul. pp. 910.
  24. McComb, W.C., Spies, T.A. and Emmingham, W.H. 1993. Douglas-fir forests: managing for timber and mature-forest habitat. Journal of Forestry 91(12): 31-42.
  25. McCune, B. and Mefford, M.J. 2016. PC-ORD. Multivariate analysis of Ecological Data, Version 7.0 for Windows. MjM Software, Oregon, U.S.A.
  26. MjM Software Design. 2016. PC-ORD Multivariate Analysis of Ecological Data(Version 7).
  27. National Geographic Information Institute. 2010. High Resolution Airborne Digital Ortho Imagery(Daegu sheet). National Geographic Information Institute. Korea.
  28. Numata, M. 1947. Ecological judgement of grassland condition and trend: I. Judgement by biological spectra. Grassland Science 11: 20-33.
  29. Odum, E. P. 1969. The strategy of ecosystem development. Science 164: 262-270. https://doi.org/10.1126/science.164.3877.262
  30. Oh, H.K., Kahng, B.S., Yu, B.H. and Song, J.Y. 2010. Vegetation Analysis to Detailed Hierarchical Vegetation Map Using Geographic Information Systems and Remote Sensing -A Case Study on the Jirisan National Park-. Proceedings of the 2010 Conference of Korean Society of Environment and Ecology 20(1): 45-48.
  31. Park, J.S. 2011. Geo Trail Planning of Mt. Apsan. Research Report of Daegu-Gyeongbuk Development Institute 2011(24): 27-28.
  32. Pedrotti, F. 2013. plant and vegetation mapping. Springer, Heidelberg. pp. 292.
  33. Peng, Y., Mi, K., Wang, H., Liu, Z., Lin, Y., Sang, W. and Cui, Q. 2019. Most suitable landscape patterns to preserve indigenous plant diversity affected by increasing urbanization: A case study of Shunyi District of Beijing, China. Urban Forestry & Urban Greening, 38, 33-41. https://doi.org/10.1016/j.ufug.2018.11.004
  34. QGIS Development Team. 2017. QGIS ver. 2.18.15. http://www.qgis.org/ko/site /forusers/download.html(2018.1.11.).
  35. Raunkiaer, C., 1934. Life Form of Plants and Statistical Plant Geography, Charendon Press, Oxford Univ. Press, London. pp. 632.
  36. Shannon, C.E. and Weaver, W. 1949. The mathematical theory of communication. University of Illinois. Illinois, USA. pp. 144.
  37. Spies, T.A. and Cline, S.P. 1988. Coarse wood debris in manipulated and unmanipulated coastal Oregon forests. From the Forest to the Sea: A Story of Fallen Trees. Pacific North-west Research Station., Gen. Tech. Rep. PNW-GTR-229: 5-23.
  38. Whittaker, R. H. 1965. Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution. Science 147(3655): 250-260. https://doi.org/10.1126/science.147.3655.250