Fig. 1. B. dorsalis larvae infesting wax apple (Syzygium samarangense) in National Taiwan University. (A) A damaged fruit containing larvae (B) Anterior morphology showing mouth part (C) Posterior morphology showing spiracles (D) CO-I sequence and Blast search.
Fig. 2. Age variation of B. dorsalis male adults among different places of Taiwan. (A) Head pterin amounts in different ages of B. dorsalis adults reared at 25℃. (B) Pterin amounts in three different locations in Taiwan. In each locality, 30 male heads were analyzed. Different letters above standard error bars indicate significant different among at type I error = 0.05 (LSD test).
Fig. 3. Genetic distance analysis among three local populations of B. dorsalis using RAPD. Their hierarchical clustering using 8041 (A) and 8011 (B) RAPD markers.
Fig. 4. Phylogenetic analysis of three local populations of B. dorsalis using CO-I (A) and ND-I sequences. Three locations include 6 fly samples of Taipei (TP1-TP6), Taichung (TC1-TC6), and Kaohsiung (TK1-TK6). All sequences were aligned with BioEdit 7.2 program and trimmed off. The processed sequences were phylogenetically analyzed with Neighbor-joining method using MEGA 6.0 program (Tamura et al., 2013). Figures at tree nodes indicate bootstrap values obtained after 1,000 repetitions.
Fig. 5. Sequence alignments of CO-I (A) and ND-I (B) of B. dorsalis collected from three locations in Taiwan: Taipei (TP), Taichung (TC), and Kaohsiung (TK). Alignment was performed by two steps. At first step, 6 individual DNA samples were aligned to produce a conserved sequence using Clustal W program of DNAStar-SeqMag. In next step, three conserved sequences were aligned. Arrows indicate hot spots containing polymorphic sequences at least two locations.
Table 1. Statistic of fruit fly collection from July 30 to Aug 1 in Taiwan
Table 2. ANOVA of pterin amounts in B. dorsalis heads
Table 3. Polymorphic sites in 360 nucleotides of CO-I of B. dorsalis in three Taiwan populations: Taipei, Taichung, and Kaohsiung
Table 4. Polymorphic sites in 213 nucleotides of ND-I of B. dorsalis in three Taiwan populations: Taipei, Taichung, and Kaohsiung
참고문헌
- Al Baki, A., Keum, E., Kim, H., Song, Y., Kim. Y., Kwon, K., Park, Y., 2017. Age grading and gene flow of overwintered Bactrocera scutellata populations. J. Asia Pac. Entomol. 20, 1402-1409. https://doi.org/10.1016/j.aspen.2017.10.008
- APQA (Animal and Plant Quarantine Agency). 2018. http://www.qia.go.kr/plant/pest/listqiaBing3_2433WebAction.do?type=1&clear=1 (accessed on September 27, 2018).
- Chen, P.H., Wu, W.J., Hsu, J.C., 2018. Detection of male Oriental fruit fly (Diptera: Tephritidae) susceptibility to naled- and fipronilintoxicated methyl eugenol. J. Econ. Entomol. 112, 316-323. https://doi.org/10.1093/jee/toy278
- Choi, D., Kwon, G., Kim, Y., 2018. Efficacy of wax-formulated lures on monitoring a quarantine insect pest, Zeugodacus caudata (Diptera: Tephritidae). Korean J. Appl. Entomol. 57, 185-190. https://doi.org/10.5656/KSAE.2018.06.0.019
- Cognato, A.I., 2006. Standard percent DNA sequence difference for insects does not predict species boundaries. J. Econ. Entomol. 99, 1037-1045. https://doi.org/10.1093/jee/99.4.1037
- Cunningham, R.T., 1989. Population detection, in: Robinson, A.S., Hooper, G. (Eds.), Fruit flies: their biology, natural enemies and control. Elsevier, Amsterdam, pp. 221-230.
- Han, H.Y., Choi, D.S., Rho, K.E., 2017. Taxonomy of Korean Bactrocera (Diptera: Tephritidae: Dacinae) with review of their biology. J. Asia Pac. Entomol. 20, 1321-1332. https://doi.org/10.1016/j.aspen.2017.09.011
- Kim, E., Kim, Y., 2014. A report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in Oriental melon farms in Kyungpook province, Korea. Korean J. Appl. Entomol. 53, 465-472. https://doi.org/10.5656/KSAE.2014.09.0.038
- Kim, Y., Kim, D., 2016. Integrated pest management against Bactrocera fruit flies. Korean J. Appl. Entomol. 55, 359-376. https://doi.org/10.5656/KSAE.2016.10.0.026
- Kim, Y., Kwon, G., 2018. Development of female annihilation technique against pumpkin fruit flies using protein-based terpinyl acetate. Korean J. Appl. Entomol. 57, 69-75. https://doi.org/10.5656/KSAE.2018.01.1.057
- Kim, Y., Kim, D., Park, K., Han, H., 2017a. Manual for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
- Kim, K., Kim, M., Kwon, G., Kim, Y., 2017b. Technologies required for development of trap-based MAT control against the striped fruit fly, Bactrocera scutellata. Korean J. Appl. Entomol. 56, 51-60. https://doi.org/10.5656/KSAE.2017.02.1.058
- Kim, Y., Kim, M., Kim, K., Vatanparast, M., Kim, Y., Kwon, G., 2017c. Formulation of wax type dispenser monitoring the Oriental fruit fly, Bactercera dorsalis, and its molecular diagnostic technology. Korean J. Appl. Entomol. 56, 289-294. https://doi.org/10.5656/KSAE.2017.06.0.004
- Kim, Y., Kim, D., Park, K., Han, H., 2018a. Manual (II) for security system against high risk fruit flies. HongReung Science, Seoul, Korea.
- Kim, Y., Imam, M., Al Baki, M.A., Ahn, J.J., 2018b. Monitoring the Oriental fruit fly (Bactrocera dorsalis), the melon fly (B. cucurbitae), and B. tau fruit fly using wax formulation lures. Korean J. Appl. Entomol. 57, 51-52. https://doi.org/10.5656/KSAE.2017.11.0.040
- Krafsur, E.S., Rosales, A.L., Kim, Y., 1999. Age structure of overwintered face fly populations estimated by pteridine concentrations and ovarian dynamics. Med. Vet. Entomol. 13, 41-47. https://doi.org/10.1046/j.1365-2915.1999.00132.x
- Lomax, M.I., Hewett-Emmett, D., Yang, T.L., Grossman, L.I., 1992. Rapid evolution of the human gene for cytochrome c oxidase subunit IV. Proc. Natl. Acad. Sci. USA 89, 5266-5270. https://doi.org/10.1073/pnas.89.12.5266
- Nishida, R., Fukami, H., 1990. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 16, 151-164. https://doi.org/10.1007/BF01021276
- Norrbom, A.L., Carroll, L.E., Thompson, F.C., White, I.M., Freidberg, A., 1999. Systematic database of names, in: Thompson, F.C. (Ed.), Fruit fly expert system and systematic information database, Diptera Data Dissemination Disk 1 & Myia. pp. 65-251.
- Raghu, S., 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res. 94, 385-399. https://doi.org/10.1079/BER2004313
- Ratnasingham, S., Hebert, P.D.N., 2007. BOLD: the barcode of life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355-364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
- SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
- Shelly, T.E., 2000. Flower-feeding effects mating performance in male oriental fruit flies Bactrocera dorsalis. Ecol. Entomol. 25, 109-114. https://doi.org/10.1046/j.1365-2311.2000.00231.x
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
- Tan, K.H., 2000. Sex pheromone components in defense of melon fly, Bactrocera cucurbitae against Asian house gecko, Hemidactylus frenatus. J. Chem. Ecol. 26, 697-704. https://doi.org/10.1023/A:1005480206023
- Tan, K.H., Nishida, R., 1998. Ecological significance of male attractant in the defence and mating strategies of the fruit fly, Bactrocera papayae. Entomol. Exp. Appl. 89, 155-158. https://doi.org/10.1046/j.1570-7458.1998.00394.x
- Virgilio, M., Jordaens, K., Verwimp, C., White, I.M., De Meyer, M., 2015. Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): Localised partition conflicts and a novel generic classification. Mol. Phylogenet. Evol. 85, 171-179. https://doi.org/10.1016/j.ympev.2015.01.007
- Wan, X., Liu, Y., Zhang, B., 2012. Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLoS One 7, e36176. https://doi.org/10.1371/journal.pone.0036176
- Wu, Z.Z., Li, H.M., Bin, S.Y., Ma, J., He, H.L., Li, X.F., Gong, F.L., Lin, J.T., 2014. Sequence analysis of mitochondrial ND1 gene can reveal the genetic structure and origin of Bactrocera dorsalis s.s. BMC Evol. Biol. 14, 55. https://doi.org/10.1186/1471-2148-14-55