DOI QR코드

DOI QR Code

톱다리개미허리노린재의 수정란을 이용한 산란모형과 생명표분석

Using Viable Eggs to Determine Oviposition Models and Life Table Analysis of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae)

  • 안정준 (온난화대응농업연구소, 국립원예특작과학원, 농촌진흥청) ;
  • 최경산 (온난화대응농업연구소, 국립원예특작과학원, 농촌진흥청) ;
  • 고상욱 (온난화대응농업연구소, 국립원예특작과학원, 농촌진흥청)
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Choi, Kyoung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Koh, Sang Wook (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
  • 투고 : 2018.12.20
  • 심사 : 2019.05.03
  • 발행 : 2019.06.01

초록

톱다리개미허리노린재는 콩과작물과 과수에 경제적 피해를 주는 주요해충이다. 본 연구는 톱다리개미허리노린재의 온도에 따른 산란특성을 규명하고 수정란을 이용한 산란모형과 생명표 매개변수를 추정하기 위하여 15.8, 19.7, 24.0, 27.8, 32.6, 34.0, $35.5^{\circ}C$ 정온조건에서 실험을 실시하였다. $15.8^{\circ}C$를 제외하고 조사된 모든 항온온도조건에서 산란이 가능하였다. 암컷 성충 수명은 $15.8^{\circ}C$ (110.5일)에서 가장 길었으며 온도가 올라갈수록 짧아지는 경향을 보였다($19.7^{\circ}C$에서 76.6일, $35.5^{\circ}C$에서 20.6일). 전체 산란수와 수정란수는 $24.0^{\circ}C$ (193.5와 151.2)에서 가장 많았으며 부화율은 $27.8^{\circ}C$ (84.0%)에서 가장 높았다. 전체 산란수와 수정란수를 이용하여 산란모형과 생명표 매개변수를 비교하였다. 수정란수를 이용시 온도별 총산란수 모형의 추정된 총산란수(159개)는 전체 산란수(190개)를 이용했을 때보다 적었다. 생명표분석에서 수정란을 이용하였을 때 개체군순증가율과 평균세대기간은 전체 산란수를 이용한 결과보다 작은 값을 나타내었다. 수정란을 이용한 산란모형 작성과 생명표분석은 실질적인 개체군변이를 이해하는데 도움이 될 것이다.

Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is an economically important insect pest of soybean and fruit trees. We investigated the temperature effects on the adult fecundity and longevity, and determined the parameters of oviposition models and life table at different constant temperatures 15.8, 19.7, 24.0, 27.8, 32.6, 34.0, and $35.5^{\circ}C$. R. pedestris females reproduced successfully from 19.7 to $35.5^{\circ}C$ except $15.8^{\circ}C$. The longevity of R. pedestris was longest at $15.8^{\circ}C$ and it decreased with increasing temperature (76.6 days at $19.7^{\circ}C$ and 20.6 days at $35.5^{\circ}C$). The number of total eggs and viable eggs was highest at $24.0^{\circ}C$ (193.5 and 151.2). Egg hatchability was highest at $27.8^{\circ}C$ (84.0%). We compared the results of oviposition models and life table parameters using both total eggs and viable eggs. The parameter value (c: the maximum reproductive capacity) (190 eggs) of temperature dependent total fecundity model using total eggs was higher than that of the model using viable eggs. When we analyzed the life table parameter the values of net reproductive rate and mean generation time using viable eggs were lower than those using total eggs. The oviposition models and life table analysis using viable eggs will be helpful to understand the real population transition of R. pedestris in agricultural system.

키워드

OOGCBV_2019_v58n2_111_f0001.png 이미지

Fig. 1. The daily fecundity of Riptortus pedestris at different constant temperatures.

OOGCBV_2019_v58n2_111_f0002.png 이미지

Fig. 2. The daily hatchability (%) of Riptortus pedestris at different constant temperatures.

OOGCBV_2019_v58n2_111_f0003.png 이미지

Fig. 3. Important components of oviposition model on Riptortus pedestris using total eggs.

OOGCBV_2019_v58n2_111_f0004.png 이미지

Fig. 4. Important components of oviposition model on Riptortus pedestris using viable eggs.

OOGCBV_2019_v58n2_111_f0005.png 이미지

Fig. 5. Simulated oviposition density curves of Riptortus pedestris related to temperatures (℃) and cohort age.

Table 1. Female longevity, fecundity (total eggs and viable eggs) and hatchability (%) (mean ± SE) of Riptortus pedestris at different temperatures

OOGCBV_2019_v58n2_111_t0002.png 이미지

Table 2. Estimated parameter values for the adult aging rate and age-specific survival rate models of Riptortus pedestris

OOGCBV_2019_v58n2_111_t0003.png 이미지

Table 3. Estimated parameter values for the age-specific cumulative oviposition rate and temperature dependent total fecundity models of Riptortus pedestris

OOGCBV_2019_v58n2_111_t0004.png 이미지

Table 4. Life table parameters of Riptortus pedestris at six different constant temperatures using viable eggs

OOGCBV_2019_v58n2_111_t0005.png 이미지

Table 5. Life table parameters of Riptortus pedestris at six different constant temperatures using total eggs

OOGCBV_2019_v58n2_111_t0006.png 이미지

참고문헌

  1. Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  2. Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844. https://doi.org/10.1146/annurev.ento.47.091201.145300
  3. Baki, A.A., Jung, J.K., Maharjan, R., Yi, H., Ahn, J.J., Gu, X., Kim, Y., 2018. Application of insulin signaling to predict insect growth rate in Maruca vitrata (Lepidoptera: Crambidae). PLos One 13, e0204935. https://doi.org/10.1371/journal.pone.0204935
  4. Berger, D., Walters, R., Gotthard, K., 2008. What limits insect fecundity? Body size and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523-529. https://doi.org/10.1111/j.1365-2435.2008.01392.x
  5. Bochdanovits, Z., de Jong G., 2003. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes. Evolution 57, 1829-1836. https://doi.org/10.1111/j.0014-3820.2003.tb00590.x
  6. Cho, J.R., Kim, J.-H., Choi, B.-R., Seo, B.-Y., Kim, K.-H., Woo, J.C., Park, C.-G., Ahn, J.J., 2018. Thermal effects on the development, fecundity and life table parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on yardlong bean (Vigna unguiculata subsp. sesquipedalis (L.)). Korean J. Appl. Entomol. 57, 261-269. https://doi.org/10.5656/KSAE.2018.08.0.025
  7. Huey, R.B., Berrigan, D., 2001. Temperature, demography and ectotherm fitness. Am. Entomol. 158, 204-210.
  8. Jandel Scientific, 1994. TableCurve User's Manual San Rafael, CA.
  9. Jha, R.K., Chi, H., Tang, L.-C., 2012. Effects of survival rate and fecundity on the intrinsic rate of increase of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Formosan Entomol. 32, 223-235.
  10. Kim, D.-S., Lee, J.-H., 2010. A population model for the peach fruit moth, Carposina sasakii Matsumaur (Lepidoptera: Carposinidae) in a Korean orchard system. Ecol. Modell. 221, 268-280. https://doi.org/10.1016/j.ecolmodel.2009.10.006
  11. Kim, D.-S., Lee, J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Modell. 162, 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  12. Kim, H., Baek S., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Leptocorisa chinensis Dallas (Hemiptera: Alydidae). J. Asia-Pac. Entomol. 21, 244-251. https://doi.org/10.1016/j.aspen.2017.12.006
  13. Kim, H., Baek, S., Kim, S., Lee, S.-Y., Lee, J.-H., 2009. Temperaturedependent development and oviposition models of Riptortus clavatus (Thunberg) (Hemiptera: Alydidae). Appl. Entomol. Zool. 44, 515-523. https://doi.org/10.1303/aez.2009.515
  14. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  15. Lee, H., Jung, J.-K., Im, J.S., Park, M., Lee, S., Lee, J.-H., 2015. Predicting the occurrence of generation for Riptortus pedestris (Fabricius) using their body color. Korean J. Appl. Entomol. 54, 431-435. https://doi.org/10.5656/KSAE.2015.11.0.072
  16. Lee, J., Baek, S., Kang, C., Lee, Y.S., Lee, Y., Lee, J.-H., 2018. Temperature-dependent development and oviposition models of Ramulus irregulariterdentatus (Phasmida: Phasmatidae). J. Asia-Pac. Entomol. 21, 903-913. https://doi.org/10.1016/j.aspen.2018.07.003
  17. Lee, Y.S., Baek, S., Lee, J., Lee, H.A., Lee, J.-H., 2018. Temperaturedependent development and oviposition models of Illeis koebelei (Coleoptera: Coccinellidae). J. Asia-Pac. Entomol. 21, 984-993. https://doi.org/10.1016/j.aspen.2018.07.011
  18. Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93, 511-518. https://doi.org/10.1603/0022-0493-93.2.511
  19. Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67, 1156-1166. https://doi.org/10.2307/1938671
  20. Mou, D.-F., Lee, C.-C., Smith, C.L., Chi, H., 2015. Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiate (Coleoptera: Coccinellidae). J. Appl. Entomol. 139, 579-291. https://doi.org/10.1111/jen.12202
  21. Park, C.-G., Park, H.-H., Seo, B.-Y., 2017. Temperature-dependent oviposition model and life table parameters of Parominus exiguous (Distant) (Hemiptear: Lygaeidae) growing on rice. Korean J. Appl. Entomol. 56, 387-394. https://doi.org/10.5656/KSAE.2017.11.0.032
  22. Park, C.-G., Yum, K.-H., Lee, S.-K., Lee, S.-G., 2015. Construction and evaluation of cohort based model for predicting population dynamics of Riptortus pedestris (Fabricicus) (Hemiptera: Alydidae) using Dymex. Korean J. Appl. Entomol. 54, 73-81. https://doi.org/10.5656/KSAE.2015.03.0.007
  23. Park, J.-J., Mo, H.-H., Lee, D.-H., Shin, K.-I., Cho, K., 2012. Modelling and validation of population dynamics of the American serpentine leafminer (Liriomyza trifolii) using leaf surface temperatures of greenhouses cherry tomatoes. Korea J. Appl. Entomol. 51, 235-243. https://doi.org/10.5656/KSAE.2012.06.0.013
  24. Pinder III, J.E., Wiener, J.G., Smith, M.H., 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59, 175-179. https://doi.org/10.2307/1936645
  25. Roy, S., Saha, T.T., Zou, Z., Raikhel, A.S., 2018. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489-511. https://doi.org/10.1146/annurev-ento-020117-043258
  26. SAS Institute. 2002. SAS user's guide; statistics version 9.1ed. SAS Institute, Cary, NC.
  27. Saska, P., Skuhrovec, J., Lukas, J., Vlach, M., Chi, H., Tuan, S.-J., Honek, A., 2017. Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 110, 392-399.
  28. Schowalte, T.D. 2011. Insect ecology: An ecosystem approach, 3rd ed., Academic Press. CA.
  29. Sugawara, R., Ullah, M. S., Ho, C.-C., Gokce, A., Chi, H., Gotoh, T., 2017. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 110, 1533-1546. https://doi.org/10.1093/jee/tox177
  30. Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77, 208-225. https://doi.org/10.1093/aesa/77.2.208
  31. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297. https://doi.org/10.1115/1.4010337