DOI QR코드

DOI QR Code

Mosquito Prevalence and Flavivirus Infection Rates in Gangwon-do, Republic of Korea

2012~2017년 강원지역에서 채집된 모기의 계절적 발생소장과 플라비바이러스 감염률

  • Chung, Se-Jin (Gangwon Institute of Health and Environment) ;
  • Ko, Seuk-Hyun (Gangwon Institute of Health and Environment) ;
  • Ko, Eun-Mi (Gangwon Institute of Health and Environment) ;
  • Lim, Eun-Joo (Gangwon Institute of Health and Environment) ;
  • Kim, Young-Su (Gangwon Institute of Health and Environment) ;
  • Lee, Wook-Gyo (Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention) ;
  • Lee, Dong-Kyu (Department of Health and Environment, Kosin University)
  • 정세진 (강원도보건환경연구원) ;
  • 고석현 (강원도보건환경연구원) ;
  • 고은미 (강원도보건환경연구원) ;
  • 임은주 (강원도보건환경연구원) ;
  • 김영수 (강원도보건환경연구원) ;
  • 이욱교 (질병관리본부 매개체분석과) ;
  • 이동규 (고신대학교 보건환경학부)
  • Received : 2019.01.29
  • Accepted : 2019.03.12
  • Published : 2019.06.01

Abstract

In total, 654,362 adult mosquitoes were captured using black light traps in Gangwon-do Province of the Republic of Korea from 2012 to 2017. The collected mosquitoes were identified to the species level, placed in pools of up to 50 mosquitoes each, by species and date of collection, and screened for flaviviruses using a reverse transcription-polymerase chain reaction assay. A total of 276,224 adult mosquitoes were grouped in 7,721 pools for virus testing, and 68 flavivirus positive pools (0.9%) were detected. Flavivirus-positive products were confirmed by DNA sequencing. Japanese encephalitis viruses were detected in single pools collected from Chuncheon (2012, 2017: Culex pipiens, 2,728 and 1,111 mosquitoes, respectively), Hoengseong (2013: Culex orientalis, 19), and Gangneung (2017: C. pipiens, 724). All the Japanese encephalitis viruses detected were revealed as genotype V. Chaoyang viruses were detected in 63 pools of 5,055 Aedes vexans nipponii and a single pool of 585 C. pipiens collected in Gangwon-do Province from 2012 to 2017. Chuncheon was the region with the highest minimum infection rates (MIR, 0.32) and maximum likehood estimate (MLE, 0.33; confidence interval (CI) 95%, 0.23-0.46) of A. vexans nipponii for Chaoyang virus, followed by Hoengseong (MIR 0.30, MLE 0.30, CI 0.16-0.52) and Gangneung (MIR 0.21, MLE 0.21, CI 0.13-0.31). Monthly MIR and MLE values of A. vexans nipponii for Chaoyang virus were the highest in October (MIR 0.38, MLE 0.38, CI 0.07-1.25).

2012~2017년까지 강원도 3개 시 군(춘천시, 강릉시, 횡성군)에서 채집된 모기는 총 6속 13종, 654,362마리가 채집되었다. 채집된 모기는 분류하여 얼룩날개모기속을 제외하고 종별, 채집일, 채집 장소에 따라 최대 50마리를 1개 실험군으로 reverse transcription-polymerase chain reaction, 염기서열 분석방법으로 플라비바이러스 감염여부를 조사하였다. 채집모기 276,224마리에 대해 7,721개 실험군을 검사한 결과 68개 실험군(0.9%)에서 플라비바이러스 유전자가 검출되었다. 검출된 플라비바이러스의 염기서열 분석결과 4개 실험군은 일본뇌염바이러스(Japanese encephalitis virus), 64개 실험군은 차오양바이러스(Chaoyang virus)로 확인되었다. 일본뇌염바이러스는 2012년 춘천시에서 채집된 2,728마리의 빨간집모기 중 1개 실험군, 2013년 횡성군에서 채집된 19마리의 동양집모기 중 1개 실험군, 2017년 춘천시에서 채집된 1,111마리의 빨간집모기 중 1개 실험군, 강릉시에서 채집된 빨간집모기 724마리 중 1개 실험군에서 검출되었다. 검출된 일본뇌염바이러스의 유전형은 모두 V형 바이러스였다. 차오양바이러스는 강원도 내에서 6년간 채집된 금빛숲모기 232,871마리, 5,055개 실험군을 대상으로 검사한 결과 63개 실험군에서 검출되었으며, 춘천지역에서 채집된 빨간집모기 585개 실험군 중 1개 실험군에서 검출되었다. 채집지역별 금빛숲모기의 차오양바이러스 감염률이 가장 높은 지역은 MIR (최소감염률) 0.32, MLE (최대우도법) 0.33 (CI 0.23~0.46) 감염률을 보인 춘천시였다. 그 뒤로 횡성군 MIR 0.30, MLE 0.30 (CI 0.16~0.52)과 강릉시 MIR 0.21, MLE 0.21 (CI 0.13~0.31)순이었다. 월별 금빛숲모기의 차오양바이러스 감염률은 10월에 MIR 0.38, MLE 0.38 (CI 0.07~1.25)로 가장 높은 감염률을 나타내었다.

Keywords

OOGCBV_2019_v58n2_89_f0001.png 이미지

Fig. 1. Distribution of female mosquitoes collected weekly at the three study sites, from 2012 to 2017.

Table 1. Real time RT-PCR conditions and melt curve program for the detection of flaviviruses

OOGCBV_2019_v58n2_89_t0001.png 이미지

Table 2. Summary of trap index (TI) for mosquitoes collected by light traps at three study sites in Gangwon-do, the Republic of Korea, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0002.png 이미지

Table 3. Total number of specimens and poolsa for flavivirus detection in Gangwon-do, the Republic of Korea, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0003.png 이미지

Table 4. Summary of Japanese encephalitis virus infection rates using MIR and MLE values for three regions in Gangwon-do, the Republic of Korea, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0004.png 이미지

Table 5. Summary of Chaoyang virus infection rates using MIR and MLE values for three regions in Gangwon-do, the Republic of Korea, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0005.png 이미지

Table 6. Collection sites and dates, and mosquito species for flavivirus-positive mosquito pools, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0006.png 이미지

Table 6. Continued

OOGCBV_2019_v58n2_89_t0007.png 이미지

Table 7. Summary of MIR and MLE of Chaoyang virus infection rates by month in Gangwon-do, the Republic of Korea, from 2012 to 2017

OOGCBV_2019_v58n2_89_t0008.png 이미지

References

  1. Andrews, E.S., Turell, M.J., 2016. Effect of holding conditions on the detection of chikungunya and Venezuelan equine encephalitis viruses in mosquito pools. J. Am. Mosq. Control Assoc. 32, 51-54. https://doi.org/10.2987/moco-32-01-51-54.1
  2. Bae, W., Kim, J.H., Kim, J., Lee, J., Hwang, E.S., 2018. Changes of epidemiological characteristics of Japanese encephalitis viral infection and birds as a potential viral transmitter in Korea. J. Korean Med. Sci. 33, e70. https://doi.org/10.3346/jkms.2018.33.e70
  3. Biggerstaff, B., 2005. PooledInfRate software. Vector Borne Zoonotic Dis. 5, 420-421. https://doi.org/10.1089/vbz.2005.5.420
  4. Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott ,T.W., Hay, S.I., 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760. https://doi.org/10.1371/journal.pntd.0001760
  5. Burkhalter, K.L., Savage, H.M., 2017. Detection of Zika virus in desiccated mosquitoes by real-time reverse transcription PCR and plaque assay. Emerg. Infect. Dis. 23, 680-681. https://doi.org/10.3201/eid2304.161772
  6. CDC (Center for Disease Control and Prevention), N.D. Mosquito Surveillance Software. https://www.cdc.gov/westnile/resourcepages/mosqSurvSoft.html. Accessed on 12 March, 2018.
  7. Chiang, C.L., Reeves, W.C., 1962. Statistical estimation of virus infection rates in mosquito vector populations. Am. J. Hyg. 75, 377-391.
  8. Choi, Y.J., 2011. Status of Japanese Encephalitis in Korea, 2010. Public Health Weekly Report KCDC 49, 149-151.
  9. Cowling, D.W., Gardner, I.A., Johnson, W.O., 1999. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med. 39, 211-225. https://doi.org/10.1016/S0167-5877(98)00131-7
  10. Gu, W., Lampman, R., Novak, R.J., 2003. Problems in estimating mosquito infection rates using minimum infection rate. J. Med. Entomol. 40, 595-596. https://doi.org/10.1603/0022-2585-40.5.595
  11. Gubler, D.J., 2007. The continuing spread of West Nile virus in the western hemisphere. Clin. Infect. Dis. 45, 1039-1046. https://doi.org/10.1086/521911
  12. Hamer, G.L., Kitron, U.D., Brawn, J.D., Loss, S.R., Ruiz, M.O., Goldberg, T.L., Walker, E.D., 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J. Med. Entomol. 45, 125-128. https://doi.org/10.1093/jmedent/45.1.125
  13. Heinz, F.X., Stiasny, K., 2012. Flaviviruses and their antigenic structure. J. Clin. Virol. 55, 289-295. https://doi.org/10.1016/j.jcv.2012.08.024
  14. Hepworth, G., 1996. Exact confidence intervals for proportions estimated by group testing. Biometrics 52, 1134-1146. https://doi.org/10.2307/2533075
  15. KCDC (Korea Centers for Disease Control and Prevention), N.D. KCDC Infectious Disease Portal website. http://www.cdc.go.kr/npt/. Accessed on 29 January 2018.
  16. Kim, H.W., Cha, G.W., Jeong, Y., Lee, W.G., Chang, K.S., Roh, J.Y., Yang, C.Y., Park, M.Y., Park, C., Shin, E.Y., 2015. Detection of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS One 10, e0116547. https://doi.org/10.1371/journal.pone.0116547
  17. Kim, Y.S., Ko, S.H., Ko, E.M., Chung, S.J., 2016. Vector surveillance against climate change in Gangwon-do, Annual Research Report, Gangwon Institute of Public Health and Environment Research, 118-121.
  18. KMA (Korea Meteorological Administration), N.D. KMA Open weather data portal website. https://data.kma.go.kr/cmmn/main.do. Accessed on 5 March 2018.
  19. Kuno, G., 1998. Universal diagnostic RT-PCR protocol for arboviruses. J. Virol. Meth. 72, 27-41. https://doi.org/10.1016/S0166-0934(98)00003-2
  20. Lee, D.K., 2017. Ecological characteristics and current status of infectious disease vectors in South Korea. J. Korean Med. Assoc. 60, 458-467. https://doi.org/10.5124/jkma.2017.60.6.458
  21. Lee, J.S., Grubaugh, N.D., Kondig, J.P., Turell, M.J., Kim, H.C., Klein, T.A., O'Guinn, M.L., 2013. Isolation and genomic characterization of Chaoyang virus strain ROK144 from Aedes vexans nipponii from the Republic of Korea. Virology 435, 220-224. https://doi.org/10.1016/j.virol.2012.10.020
  22. Liu, H., Gao, X., Liang, G., 2011. Newly recognized mosquitoassociated viruses in mainland China, in the last two decades. Virol. J. 8, 68-80. https://doi.org/10.1186/1743-422X-8-68
  23. Lord, C.C., Rutledge, C.R., Tabachnick, W.J., 2006. Relationships between host viremia and vector susceptibility for arboviruses. J. Med. Entomol. 43, 623-630. https://doi.org/10.1093/jmedent/43.3.623
  24. Nam, J.G., 2013. Flavivirus surveillance in mosquitoes collected from the quarantine area of Incheon National Airport, 2012. Public Health Weekly Report, KCDC 6, 21-25.
  25. Park, S.I., 2012. A sampling strategy for estimating infection rate in vector mosquitos of mosquito borne bovine viral diseases. J. Vet. Clin. 29, 63-67.
  26. Read, N.R., Moon, R.D., 1996. Simulation of development and survival of Aedes vexans (Diptera: Culicidae) larvae and pupae. Environ. Entomol. 25, 1113-1121. https://doi.org/10.1093/ee/25.5.1113
  27. Ree, H.I., Lee, S.K., 1993. Studies on mosquito population dynamics in Chollabug-do, Korea (1985-1990). Factors influencing population sizes of Culex tritaeniorhynchus and Anopheles sinensis. Korean J. Entomol. 23, 185-194.
  28. Self, L.S., Shin, H.K., Kim, K.H., Lee, K.W., Chow, C.Y., Hong, H.K., 1973. Ecological studies on Culex tritaeniorhynchus as a vector of Japanese encephalitis. Bull. World Health Organ. 49, 41-47.
  29. Seo, H.J., Kim, H.C., Klein, T.A., Ramey, A.M., Lee, J.H., Kyung, S.G., Park, J.Y., Cho, Y.S., Cho, I.S., Yeh, J.Y., 2013. Molecular detection and genotyping of Japanese encephalitis virus in mosquitoes during a 2010 outbreak in the Republic of Korea. PLoS One 8, e55165. https://doi.org/10.1371/journal.pone.0055165
  30. Takhampunya, R., Kim, H.C., Tippayachai, B., Lee, D.K., Lee, W.J., Chong, S.T., Kim, M.S., Lee, J.S., Klein, T.A., 2014. Distribution and mosquito hosts of Chaoyang virus, a newly reported flavivirus from the Republic of Korea, 2008-2011. J. Med. Entomol. 51, 464-474. https://doi.org/10.1603/ME13033
  31. Tiawsirisup, S., Kinley, J.R., Tucker, B.J., Evans, R.B., Rowley, W.A., Platt, K.B., 2008. Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector. J. Med. Entomol. 45, 452-457. https://doi.org/10.1603/0022-2585(2008)45[452:VCOAVD]2.0.CO;2
  32. Trpis, M., Shemanchuk, J.A., 1970. Effect of constant temperature on the larval development of aedes vexans (Diptera: Culicidae). Can. Entomol. 102, 1048-1051. https://doi.org/10.4039/Ent1021048-8
  33. Turell, M.J., Spring, A.R., Miller, M.K., Cannon, C.E., 2002. Effect of holding conditions on the detection of West Nile viral RNA by reverse transcriptase-polymerase chain reaction from mosquito (Diptera: Culicidae) pools. J. Med. Entomol. 39, 1-3. https://doi.org/10.1603/0022-2585-39.1.1
  34. Wang. Z.S., An, S.Y., Wang, Y., Han, Y., Guo, J., 2009. A new virus of flavivirus: Chaoyang virus isolated in Liaoning province. Chin. J. Pub. Health 25, 769-772.
  35. Ward, R.A., 1992. Third supplement to "A catalog of the mosquitoes of the world" (Diptera: Culicidae). Mosq. Syst. 24, 177-230.
  36. Wispelaere, M., Despres, P., Choumet, V., 2017. European Aedes albopictus and Culex pipiens are competent vectors for Japanese encephalitis virus. PLoS Negl. Trop. Dis. 13, e0005294. https://doi.org/10.1371/journal.pntd.0005294
  37. Yang, C.F., Chen, C.F., Su, C.L., Teng, H.J., Lu, L.C., Lin, C., Wang, C.Y., Shu, P.Y., Huang, J.H., Wu, H.S., 2010. Screening of mosquitoes using SYBR Green I-based real-time RT-PCR with group-specific primers for detection of Flaviviruses and Alphaviruses in Taiwan. J. Virol. Methods 168, 147-151. https://doi.org/10.1016/j.jviromet.2010.05.006