Figure 3.1. Power across differences between means (k = 2). red: Gap statistic; green: minimum combination t-test; blue: maximum combination t-test.
Figure 3.2. Power across differences between means (k = 3). red: Gap statistic; green: minimum combination t-test; blue: maximum combination t-test.
Figure 4.1. Gap statistic across the numbers of cluster (k), patient number: 1–4.
Figure 4.2. Gap statistic across the numbers of cluster (k), patient number: 5–10.
Figure 4.3. Results for the real data set using gap statistic and maximum combination t-test, patient number:1, 2.
Figure 4.4. Results for the real data set using gap statistic and maximum combination t-test, patient number:3, 5.
Figure 4.5. Results for the real data set using gap statistic and maximum combination t-test, patient number:7–9.
Table 3.1. The probability of making a type I error
Table 4.1. Results for the real data set using Gap statistic and Minimum combination t-test
Table 4.2. Results for the real data set using maximum combination t-test
References
- Baker, F. B. and Hubert L. J. (1976). A graph-theoretic approach to goodness-of-fit in complete-link hierarchical clustering, Journal of the American Statistical Association, 71, 870-878. https://doi.org/10.1080/01621459.1976.10480961
- Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, 224-227. https://doi.org/10.1109/TPAMI.1979.4766909
- Dunn, J. C. (1974). Well-separated clusters and optimal Fuzzy partitions, Journal of Cybernetics, 4, 95-104. https://doi.org/10.1080/01969727408546059
- Dunn, O. J. (1961). Multiple comparisons among means, Journal of the American Statistical Association, 56, 52-64. https://doi.org/10.1080/01621459.1961.10482090
- Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance, Transactions of the Royal Society of Edinburgh, 52, 399-433. https://doi.org/10.1017/S0080456800012163
- Hartigan, J. and Wong, M. (1979). Algorithm AS 136: A K-means clustering algorithm, Journal of the Royal Statistical Society Series C (Applied Statistics), 28, 100-108.
- Heo, M. and Lim, C. (2017). A minimum combination t-test method for testing differences in population means based on a group of samples of size one, The Korean Journal of Applied Statistics, 30, 301-309. https://doi.org/10.5351/KJAS.2017.30.2.301
- Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441
- Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2018). Cluster: Cluster analysis basics and extensions, R package version 2.0.7-1.
- Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Student (1908). The probable error of a mean, Biometrika, 6, 1-25. https://doi.org/10.1093/biomet/6.1.1
- Thorndike, R. L. (1953). Who belongs in the family?, Psychometrika, 18, 267. https://doi.org/10.1007/BF02289263
- Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of data clusters via the gap statistic, Journal of the Royal Statistical Society, 63, 411-423. https://doi.org/10.1111/1467-9868.00293
- Yan, M. and Ye, K. (2007). Determining the number of clusters using the weighted gap statistic, Biometrics, 63, 1031-1037. https://doi.org/10.1111/j.1541-0420.2007.00784.x
- Yoo, J., Kim, Y., Lim, C., Heo, M., Hwang, I., and Chong, S. (2017). Assessment of Spatial Tumor Het-erogeneity using CT Phenotypic Features Estimated by Semi-Automated 3D CT Volumetry of Multiple Pulmonary Metastatic Nodules: A Preliminary Study, unpublished manuscript.