DOI QR코드

DOI QR Code

Comparative Study of a Multi-Channel Coils of Magnetic Resonance Imaging(MRI) Signal Intensities under Identical Parameters

동일한 조건의 자기공명검사에서 코일의 채널수 변화에 따른 신호강도의 평가

  • 손순룡 (원광보건대학교 방사선과)
  • Received : 2019.02.08
  • Accepted : 2019.03.08
  • Published : 2019.06.28

Abstract

The purpose of this study was to determine how the different number of channels of coils were related in the perceived signal intensity under identical parameters and area. Dedicated knee phantoms were scanned consecutively using both of the 16-channel and 8-channel knee coils. The T1 weighted and T2 weighted sequences were acquired using both coils to compare the signal intensities according to the number of channels. As a result, the 16-channel knee coils outperformed the 8-channel knee coils and the signal intensity was significantly increased in both of the T1 and T2 weighted images with the 16-channel coil. In conclusion, it is considered that better signal intensities and more clinical utility can be provided, when coils with more number of channels are used rather than using the coils with smaller number of channels.

본 연구는 동일한 조건과 동일한 부위에 채널수가 다른 코일을 적용하여 신호강도를 비교함으로써 신호강도를 향상시키는데 채널수의 관련성을 알아보고자 하였다. 연구방법은 8 채널과 16 채널의 Knee 코일에 전용 팬텀을 장착한 후 T1, T2 강조영상을 획득하여 코일의 채널수에 따라 영상의 신호강도가 어느 정도 차이가 있는지 비교하였다. 연구결과 T1, T2 강조영상 모두 8채널 보다 16 채널 코일을 사용하였을 때 영상의 신호강도가 유의하게 증가하였다. 결론적으로 채널수가 적은 코일 보다는 많은 코일을 사용하는 것이 신호강도를 증가시킬 수 있었으므로 임상적용에 유용성이 크다고 판단된다.

Keywords

CCTHCV_2019_v19n6_418_f0001.png 이미지

Fig. 1. Experimental method according to the number of channels of coil

CCTHCV_2019_v19n6_418_f0002.png 이미지

Fig. 2. Phantom images according to the number of channels of coil

Table 1. Image parameters

CCTHCV_2019_v19n6_418_t0001.png 이미지

Table 2. Signal intensity according to the number of channels of the coil

CCTHCV_2019_v19n6_418_t0002.png 이미지

Table 3. Paired T-test according to the number of channels of coil

CCTHCV_2019_v19n6_418_t0003.png 이미지

References

  1. L. Haakil, 자기공명 영상과 분광법의 이해 , 계명대학교출판부, 2016.
  2. B. M. Dale, M. A. Brown, and R. C. Semelka, MRI: basic principles and applications, John Wiley & Sons, 2015.
  3. B. Tomanek, Innovative mutually inductively coupled radiofrequency coils for magnetic resonance imaging and spectroscopy, The Henryk Niewodniczanski Institute of Nuclear Physics, 2006.
  4. R. Turner, "A target field approach to optimal coil design," Journal of physics D: Applied physics, Vol.19, No.8, p.147, 1986. https://doi.org/10.1088/0022-3727/19/1/019
  5. S. Y. Son, "Analysis of Distances for MRI Scan to Maintain Pptimal Signal Intensity in a Surface Coil," International Journal of Contents, Vol.18 No.10, pp.158-164, 2018.
  6. H. S. Lee, D. C. Woo, K. H. Min, Y. K. Kim, H. K. Lee, and B. Y. Choe, "Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI," Journal of the Korean Society of Magnetic Resonance in Medicine, Vol.11, No.1, pp.20-26, 2007.
  7. V. P. Grover, J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylot-Robinson, and M. J. McPhail, "Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians," Journal of clinical and experimental hepatology, Vol.5, No.3, pp.246-255, 2015. https://doi.org/10.1016/j.jceh.2015.08.001
  8. H. B. Lee, K. W. Choi, and S. Y. Son, "The Optimal Signal Intensity according to Image Scale Reset of MRI," International Journal of Contents, Vol.17 No.12, pp.266-271, 2017.
  9. T. W. Redpath, "Signal-to-noise ratio in MRI," The British Journal of Radiology, Vol.71, No.847, pp.704-707, 1998. https://doi.org/10.1259/bjr.71.847.9771379
  10. T. Nakada, "Clinical application of high and ultra high-field MRI, Brain and Development," Vol.29, No.6, pp.325-335, 2007. https://doi.org/10.1016/j.braindev.2006.10.005
  11. B. J. Soher, B. M. Dale, and E. M. Merkle, "A review of MR physics: 3T versus 1.5 T, Magnetic resonance imaging clinics of North America," Vol.15, No.3, pp.277-290, 2007. https://doi.org/10.1016/j.mric.2007.06.002
  12. C. M. Collins, Q. X. Yang, J. H. Wang, X. Zhang, H. Liu, S. Michaeli, X. H. Zhu, G. Adriany, J. T. Vaughan, P. Anderson, H. Merkle, K. Ugurbil, M. B. Smith, and W. Chen, "Different excitation and reception distributions with a single-loop transmit-receive surface coil near a head-sized spherical phantom at 300 MHz," Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, Vol.47, No.5, pp.1026-1028, 2002. https://doi.org/10.1002/mrm.10153
  13. S. Y. Park, J. S. Park, W. Jin, K. H. Rhyu, and K. N. Ryu, "Diagnosis of acetabular labral tears: comparison of three-dimensional intermediate-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography at 3.0T," Acta Radiologica, Vol.54, No.1, pp.75-82, 2013. https://doi.org/10.1258/ar.2012.120338
  14. C. H. Lim and S. J. Bae, "3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle," Journal of the Korean Society of Radiological Technology, Vol.32, No.2, pp.177-182, 2009.
  15. T. S. Kim, J. B. Kim, J. Y. Kim, N. K. Choi, and S. J. Jang, "Signal strength changes of cerebrum in 3.0T magnetic resonance imaging on Spin-echo T1 weighted images according to the Flip Angle," Journal of Korean Society of MR Technology, Vol.17, No.1, pp.179-180, 2007.
  16. D. K. Seo, S. R. Na, J. H. Park, K. W. Choi, H. B. Lee, and D. K. Han, "Effectiveness of a silicone device for foot MRI in order to obtain homogeneous fat suppression images," Acta Radiologica, Vol.56, No.4, pp.471-476, 2015. https://doi.org/10.1177/0284185114531572
  17. K. W. Choi and S. Y. Son, "A research on improving signal to noise ratio for magnetic resonance imaging through increasing filling factor inside surface coil," Journal of the Korea Academia-Industrial cooperation Society, Vol.13, No.11, pp.5299-5304, 2012. https://doi.org/10.5762/KAIS.2012.13.11.5299
  18. S. Y. Son, "A Study on Indirect Attachment Method of Compensation Materials to Increase Signal Intensity in Magnetic Resonance Imaging," International Journal of Contents, Vol.17, No.7, pp.437-442, 2017.
  19. T. J. Lawry, M. W. Weiner, and G. B. Matson, "Computer modeling of surface coil sensitivity," Magnetic resonance in medicine, Vol.16, No.2, pp.294-302, 1990. https://doi.org/10.1002/mrm.1910160210
  20. R. Buchli, M. Saner, D. Meier, E. B. Boskamp, and P. Boesiger, "Increased rf power absorption in MR imaging due to rf coupling between body coil and surface coil," Magnetic resonance in medicine, Vol.9, No.1, pp.105-112, 1989. https://doi.org/10.1002/mrm.1910090112
  21. K. R. Minard and R. A. Wind, "Solenoidal microcoil design. Part I: Optimizing RF homogeneity and coil dimensions," Concepts in Magnetic Resonance: An Educational Journal, Vol.13, No.2, pp.128-142, 2001. https://doi.org/10.1002/1099-0534(2001)13:2<128::AID-CMR1002>3.0.CO;2-8
  22. H. S. Lee, H. Moon, Y. Chang, and K. S. Hong, "The Effect of Coating Material of Copper-wire RF Coil on the Signal-to-Noise Ratio in MR Images," Journal of the Korean Society of Magnetic Resonance in Medicine, Vol.13, No.2, pp.171-176, 2009.
  23. W. A. Willinek and H. H. Schild, "Clinical advantages of 3.0 T MRI over 1.5 T," European journal of radiology, Vol.65, No.1, pp.2-14, 2008. https://doi.org/10.1016/j.ejrad.2007.11.006