DOI QR코드

DOI QR Code

Local strain / stress and their influence to mechano - electromagnetic properties of in composite superconducting wires

  • 투고 : 2019.05.10
  • 심사 : 2019.06.12
  • 발행 : 2019.06.30

초록

Practical superconducting wires are designed with a composite structure to meet the desired engineering characteristics by expert selection of materials and design of the architecture. In practice, the local strain exerted on the superconducting component influences the electromagnetic properties. Here, recent progress in methods used to measure the local strain in practical superconducting wires and conductors using quantum beam techniques is introduced. Recent topics on the strain dependence of critical current are reviewed for three major practical wires: $Nb_3Sn$, BSCCO-2223 and REBCO tapes.

키워드

CJJOCB_2019_v21n2_1_f0002.png 이미지

Fig. 1. Principle of strain measurement by diffraction method.

CJJOCB_2019_v21n2_1_f0003.png 이미지

Fig. 2. Low temperature apparatus for strain measurement under tensile strain at RESA, JRR-3.

CJJOCB_2019_v21n2_1_f0004.png 이미지

Fig. 3. Setup for strain measurement on Nb3Sn wires, where 1: three Nb3Sn wires, 2: dummy wire under no applied strain, 3: Nb3Sn powder, 4: Ni powder, 5: strain gauges and 6: thermometer.

CJJOCB_2019_v21n2_1_f0005.png 이미지

Fig. 4. Low temperature apparatus at BL19 TAKUMI of J-PARC.

CJJOCB_2019_v21n2_1_f0006.png 이미지

Fig. 5. Detail of the sample holder.

CJJOCB_2019_v21n2_1_f0007.png 이미지

Fig. 6. Room temperature apparatus at BL46XU SPring-8.

CJJOCB_2019_v21n2_1_f0008.png 이미지

Fig. 7. Two types of sample holder for diffraction experiments.

CJJOCB_2019_v21n2_1_f0009.png 이미지

Fig. 8. Open cryostat system for Ic measurements under tensile and compressive uniaxial load.

CJJOCB_2019_v21n2_1_f0010.png 이미지

Fig. 9. Cross section of the Nb3Sn wires.

CJJOCB_2019_v21n2_1_f0011.png 이미지

Fig. 10. Applied strain dependence of normalized critical current for ITER Nb3Sn strand fabricated by Hitachi cable.

CJJOCB_2019_v21n2_1_f0012.png 이미지

Fig. 11. Applied strain dependence of local strain exerted on Nb3Sn filaments at 9.3 K.

CJJOCB_2019_v21n2_1_f0013.png 이미지

Fig. 13. Applied strain dependence of the normalized critical current for BSCCO tapes laminated with and without SS sheet.

CJJOCB_2019_v21n2_1_f0014.png 이미지

Fig. 14. Applied strain dependence of local strain exerted on BSCCO filaments for DI-BSCCO tapes.

CJJOCB_2019_v21n2_1_f0015.png 이미지

Fig. 15. Stress - strain curve at room temperature for four DI - BSCCO tapes laminated with SS sheet and one bare tape.

CJJOCB_2019_v21n2_1_f0016.png 이미지

Fig. 16. Change of three kinds of strains as a function of pretension, where A95 is the strain to retain 95% Ic , Ay is the yielding strain and Ar is the relaxation strain of BSCCO filaments.

CJJOCB_2019_v21n2_1_f0017.png 이미지

Fig. 17. Normalized critical currents, Ic/Ic0 and Icr/Ic0 as a function of applied strain for Superpower tape free standing.

CJJOCB_2019_v21n2_1_f0018.png 이미지

Fig. 19. Change of local strain exerted on REBCO layer as a function of applied strain at RT for the tape free standing and the tape mounted on SB for Superpower tape.

CJJOCB_2019_v21n2_1_f0019.png 이미지

Fig. 20. Normalized critical currents obtained by two techniques as a function of local strain exerted on REBCO layer for Superpower tape.

CJJOCB_2019_v21n2_1_f0020.png 이미지

Fig. 12. Record of stress – strain data during the neutron diffraction measurements.

CJJOCB_2019_v21n2_1_f0021.png 이미지

Fig. 18. Normalized critical currents, Ic/Ic0 and Icr/Ic0 as a function of applied strain for Superpower tape mounted on SB.

TABLE I NUMERICAL COMPARISON FOR USUAL NEUTRON AND X-RAY DIFFRACTION EXPERIMENTS FOR COPPER.

CJJOCB_2019_v21n2_1_t0001.png 이미지

참고문헌

  1. K. Osamura, S. Machiya, Y Tsuchiya and H Suzuki, Supercond. Sci. Technol., vol. 23, pp. 045020-045026, 2010. https://doi.org/10.1088/0953-2048/23/4/045020
  2. K. Vinod, R. G. Abhilash Kumar and U. Syamaprasad, Supercond. Sci. Technol., vol. 20, pp. R1-R13, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
  3. K. Osamura, S. Machiya, H. Suzuki, S. Ochiai, H. Adachi, N. Ayai, K. Hayashi and K. Sato, Supercond. Sci. Technol., vol. 21, pp. 054010-054018, 2008. https://doi.org/10.1088/0953-2048/21/5/054010
  4. S. Ochiai and H. Okuda, J. Cryo. Soc. Jpn., vol. 46, pp. 212-219, 2011. https://doi.org/10.2221/jcsj.46.212
  5. K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato and S. Ochiai, IEEE Trans Applied Supercon., vol. 22, pp. 8400809, 2012. https://doi.org/10.1109/TASC.2011.2178847
  6. K. Ilin, K. A. Yagotintsev, et al., Supercond. Sci. Technol., vol. 28, pp. 055006, 2015. https://doi.org/10.1088/0953-2048/28/5/055006
  7. T. Suzuki, S. Awaji, H. Oguro and K. Watanabe, IEEE Trans. Applied Supercon., vol. 25, pp. 8400704, 2015.
  8. K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato, S. Harjo, K. Miyashita, Y. Wadayama, S. Ochiai and A. Nishimura, Supercond. Sci. Technol., vol. 26, pp. 094001, 2013. https://doi.org/10.1088/0953-2048/26/9/094001
  9. H. Oguro, S. Awaji, K. Watanabe, M. Sugano, S. Machiya, T. Shobu, M. Sato, T. Koganezawa and K. Osamura, Supercond. Sci. Technol., vol. 25, pp. 054004, 2012. https://doi.org/10.1088/0953-2048/25/5/054004
  10. D. Arbelaez, A. Godeke and S. O. Prestemon, Supercond. Sci. Technol., vol. 22, pp. 025005, 2009. https://doi.org/10.1088/0953-2048/22/2/025005
  11. D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Technol., vol. 18, pp. S241-52, 2005. https://doi.org/10.1088/0953-2048/18/12/005
  12. K. Osamura, M. Sugano, S. Machiya, H. Adachi, S. Ochiai and M. Sato, Supercond. Sci. Technol., vol. 22, pp. 065001-6, 2009. https://doi.org/10.1088/0953-2048/22/6/065001
  13. H. Oguro, S. Awaji, G. Nishijima, K. Takahashi, K. Watanabe, S. Machiya, H. Suzuki, Y. Tsuchiya and K. Osamura, Supercond. Sci. Technol., vol. 23, pp. 025034, 2010. https://doi.org/10.1088/0953-2048/23/2/025034
  14. K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato, T. Hemmi, Y. Nunoya and S. Ochiai, Supercond. Sci. Technol., vol. 25, pp. 054010, 2012. https://doi.org/10.1088/0953-2048/25/5/054010
  15. Y. Tsuchiya, H. Suzuki, T. Umeno, S. Machiya and K. Osamura, Meas. Sci. Technol., vol. 21, pp. 025904, 2010. https://doi.org/10.1088/0957-0233/21/2/025904
  16. K. Osamura, S. Machiya, S. Harjo, T. Nakamoto, N. Cheggour and A. Nijhuis, Supercond. Sci. Technol., vol. 28, pp. 045016, 2015. https://doi.org/10.1088/0953-2048/28/4/045016
  17. S. Harjos, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi and T. Kamiyama, Mater. Sci. Forum, vol. 681, pp. 443-8, 2011. https://doi.org/10.4028/www.scientific.net/MSF.681.443
  18. X. Jin, et al., Rev. Sci. Instrum., vol. 84, pp. 063106, 2013. https://doi.org/10.1063/1.4810010
  19. K. Osamura, S. Machiya, D. P. Hampshire, Y. Tsuchiya, T. Shobu, K. Kajiwara, G. Osabe, K. Yamazaki, Y. Yamada and J. Fujikami, Supercond. Sci. Technol., vol. 27, pp. 085005, 2014. https://doi.org/10.1088/0953-2048/27/8/085005
  20. P. Sunwong, J. S. Higgins and D. P. Hampshire, IEEE Trans. Appl. Supercond., vol. 21, pp. 2840-4, 2011. https://doi.org/10.1109/TASC.2010.2097573
  21. J. W. Ekin, Cryogenics, vol. 20, pp. 611, 1980. https://doi.org/10.1016/0011-2275(80)90191-5
  22. B. ten Haken, A. Gedeke and H. H. J. ten Kate, J. Appl. Phys., vol. 85, pp. 3247, 1999. https://doi.org/10.1063/1.369667
  23. W. D. Markiewicz, Cryogenics, vol. 44, pp. 895, 2004. https://doi.org/10.1016/j.cryogenics.2004.06.004
  24. X. F. Lu, D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Technol., vol. 21, pp. 105016, 2008. https://doi.org/10.1088/0953-2048/21/10/105016
  25. D. Arbelaez, A. Godeke and S. O. Prestemon, Supercond. Sci. Technol., vol. 22, pp. 025005, 2009. https://doi.org/10.1088/0953-2048/22/2/025005
  26. Y. Tsuchiya, H. Suzuki, T. Umeno, S. Machiya and K. Osamura, Meas. Sci. Technol., vol. 21, pp. 025904, 2010. https://doi.org/10.1088/0957-0233/21/2/025904
  27. K. Osamura, S. Machiya, H. Taniguchi, Y. Tsuchiya, H. Suzuki, T. Shoubu, S. Harjo, M. Sato, K. Miyashi, S. Ochiai and A. Nishimura, J. Cryo. Super. Soc. Jpn., vol. 48, pp. 617-624, 2013. https://doi.org/10.2221/jcsj.48.617
  28. N, Mitchell, Cryogenics, vol. 45, pp. 501-15, 2005. https://doi.org/10.1016/j.cryogenics.2005.06.003
  29. K. Osamura, S. Machiya, S. Ochiai, G. Osabe, K. Yamazaki and J. Fujikami, Supercond. Sci. Technol., vol. 26, pp. 045012, 2013. https://doi.org/10.1088/0953-2048/26/4/045012
  30. K. Osamura, S. Machiya, H. Suzuki, S. Ochiai, H. Adachi, N. Ayai, K. Hayashi and K. Sato, IEEE Transaction on Appl. Supercond., vol. 19, pp. 3026-3029, 2009. https://doi.org/10.1109/TASC.2009.2019020
  31. K. Osamura, S. Machiya, S. Ochiai, G. Osabe, K. Yamazaki and J. Fujikami, IEEE Trans Applied Supercond., vol. 23, pp. 6400504-7, 2013. https://doi.org/10.1109/TASC.2013.2243373
  32. S. Ochiai, H. Rokkaku, J. K. Shin, S. Iwamoto, H. Okuda, K. Osamura, M. Sato, A. Otto and A. Malozemoff, Supercond. Sci. Technol., vol. 21, pp. 075009-075021, 2008. https://doi.org/10.1088/0953-2048/21/7/075009
  33. http://superpower-inc.com/content/2g-hts-wire
  34. http://i-sunam.com/home/en_company,4,1,4,4
  35. K. Osamura, S. Machiya and D. Hampshire, Supercond. Sci. Technol., vol. 29, pp. 065019, 2016. https://doi.org/10.1088/0953-2048/29/6/065019
  36. K. Osamura, S. Machiya, Y. Tsuchiya and H. Suzuki, IEEE Trans Applied Supercond., vol. 20, pp. 1532-1536, 2010. https://doi.org/10.1109/TASC.2010.2042437
  37. K. Osamura, S. Machiya, Y. Tsuchiya, S. Harjo, H. Suzuki, T. Shobu, K. Kiriyama and M. Sugano, IEEE Transaction on Applied Supercond., vol. 21, pp. 3090-3093, 2011. https://doi.org/10.1109/TASC.2010.2086038