Fig. 1. Principle of strain measurement by diffraction method.
Fig. 2. Low temperature apparatus for strain measurement under tensile strain at RESA, JRR-3.
Fig. 3. Setup for strain measurement on Nb3Sn wires, where 1: three Nb3Sn wires, 2: dummy wire under no applied strain, 3: Nb3Sn powder, 4: Ni powder, 5: strain gauges and 6: thermometer.
Fig. 4. Low temperature apparatus at BL19 TAKUMI of J-PARC.
Fig. 5. Detail of the sample holder.
Fig. 6. Room temperature apparatus at BL46XU SPring-8.
Fig. 7. Two types of sample holder for diffraction experiments.
Fig. 8. Open cryostat system for Ic measurements under tensile and compressive uniaxial load.
Fig. 9. Cross section of the Nb3Sn wires.
Fig. 10. Applied strain dependence of normalized critical current for ITER Nb3Sn strand fabricated by Hitachi cable.
Fig. 11. Applied strain dependence of local strain exerted on Nb3Sn filaments at 9.3 K.
Fig. 13. Applied strain dependence of the normalized critical current for BSCCO tapes laminated with and without SS sheet.
Fig. 14. Applied strain dependence of local strain exerted on BSCCO filaments for DI-BSCCO tapes.
Fig. 15. Stress - strain curve at room temperature for four DI - BSCCO tapes laminated with SS sheet and one bare tape.
Fig. 16. Change of three kinds of strains as a function of pretension, where A95 is the strain to retain 95% Ic , Ay is the yielding strain and Ar is the relaxation strain of BSCCO filaments.
Fig. 17. Normalized critical currents, Ic/Ic0 and Icr/Ic0 as a function of applied strain for Superpower tape free standing.
Fig. 19. Change of local strain exerted on REBCO layer as a function of applied strain at RT for the tape free standing and the tape mounted on SB for Superpower tape.
Fig. 20. Normalized critical currents obtained by two techniques as a function of local strain exerted on REBCO layer for Superpower tape.
Fig. 12. Record of stress – strain data during the neutron diffraction measurements.
Fig. 18. Normalized critical currents, Ic/Ic0 and Icr/Ic0 as a function of applied strain for Superpower tape mounted on SB.
TABLE I NUMERICAL COMPARISON FOR USUAL NEUTRON AND X-RAY DIFFRACTION EXPERIMENTS FOR COPPER.
References
- K. Osamura, S. Machiya, Y Tsuchiya and H Suzuki, Supercond. Sci. Technol., vol. 23, pp. 045020-045026, 2010. https://doi.org/10.1088/0953-2048/23/4/045020
- K. Vinod, R. G. Abhilash Kumar and U. Syamaprasad, Supercond. Sci. Technol., vol. 20, pp. R1-R13, 2007. https://doi.org/10.1088/0953-2048/20/1/R01
- K. Osamura, S. Machiya, H. Suzuki, S. Ochiai, H. Adachi, N. Ayai, K. Hayashi and K. Sato, Supercond. Sci. Technol., vol. 21, pp. 054010-054018, 2008. https://doi.org/10.1088/0953-2048/21/5/054010
- S. Ochiai and H. Okuda, J. Cryo. Soc. Jpn., vol. 46, pp. 212-219, 2011. https://doi.org/10.2221/jcsj.46.212
- K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato and S. Ochiai, IEEE Trans Applied Supercon., vol. 22, pp. 8400809, 2012. https://doi.org/10.1109/TASC.2011.2178847
- K. Ilin, K. A. Yagotintsev, et al., Supercond. Sci. Technol., vol. 28, pp. 055006, 2015. https://doi.org/10.1088/0953-2048/28/5/055006
- T. Suzuki, S. Awaji, H. Oguro and K. Watanabe, IEEE Trans. Applied Supercon., vol. 25, pp. 8400704, 2015.
- K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato, S. Harjo, K. Miyashita, Y. Wadayama, S. Ochiai and A. Nishimura, Supercond. Sci. Technol., vol. 26, pp. 094001, 2013. https://doi.org/10.1088/0953-2048/26/9/094001
- H. Oguro, S. Awaji, K. Watanabe, M. Sugano, S. Machiya, T. Shobu, M. Sato, T. Koganezawa and K. Osamura, Supercond. Sci. Technol., vol. 25, pp. 054004, 2012. https://doi.org/10.1088/0953-2048/25/5/054004
- D. Arbelaez, A. Godeke and S. O. Prestemon, Supercond. Sci. Technol., vol. 22, pp. 025005, 2009. https://doi.org/10.1088/0953-2048/22/2/025005
- D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Technol., vol. 18, pp. S241-52, 2005. https://doi.org/10.1088/0953-2048/18/12/005
- K. Osamura, M. Sugano, S. Machiya, H. Adachi, S. Ochiai and M. Sato, Supercond. Sci. Technol., vol. 22, pp. 065001-6, 2009. https://doi.org/10.1088/0953-2048/22/6/065001
- H. Oguro, S. Awaji, G. Nishijima, K. Takahashi, K. Watanabe, S. Machiya, H. Suzuki, Y. Tsuchiya and K. Osamura, Supercond. Sci. Technol., vol. 23, pp. 025034, 2010. https://doi.org/10.1088/0953-2048/23/2/025034
- K. Osamura, S. Machiya, Y. Tsuchiya, H. Suzuki, T. Shobu, M. Sato, T. Hemmi, Y. Nunoya and S. Ochiai, Supercond. Sci. Technol., vol. 25, pp. 054010, 2012. https://doi.org/10.1088/0953-2048/25/5/054010
- Y. Tsuchiya, H. Suzuki, T. Umeno, S. Machiya and K. Osamura, Meas. Sci. Technol., vol. 21, pp. 025904, 2010. https://doi.org/10.1088/0957-0233/21/2/025904
- K. Osamura, S. Machiya, S. Harjo, T. Nakamoto, N. Cheggour and A. Nijhuis, Supercond. Sci. Technol., vol. 28, pp. 045016, 2015. https://doi.org/10.1088/0953-2048/28/4/045016
- S. Harjos, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi and T. Kamiyama, Mater. Sci. Forum, vol. 681, pp. 443-8, 2011. https://doi.org/10.4028/www.scientific.net/MSF.681.443
- X. Jin, et al., Rev. Sci. Instrum., vol. 84, pp. 063106, 2013. https://doi.org/10.1063/1.4810010
- K. Osamura, S. Machiya, D. P. Hampshire, Y. Tsuchiya, T. Shobu, K. Kajiwara, G. Osabe, K. Yamazaki, Y. Yamada and J. Fujikami, Supercond. Sci. Technol., vol. 27, pp. 085005, 2014. https://doi.org/10.1088/0953-2048/27/8/085005
- P. Sunwong, J. S. Higgins and D. P. Hampshire, IEEE Trans. Appl. Supercond., vol. 21, pp. 2840-4, 2011. https://doi.org/10.1109/TASC.2010.2097573
- J. W. Ekin, Cryogenics, vol. 20, pp. 611, 1980. https://doi.org/10.1016/0011-2275(80)90191-5
- B. ten Haken, A. Gedeke and H. H. J. ten Kate, J. Appl. Phys., vol. 85, pp. 3247, 1999. https://doi.org/10.1063/1.369667
- W. D. Markiewicz, Cryogenics, vol. 44, pp. 895, 2004. https://doi.org/10.1016/j.cryogenics.2004.06.004
- X. F. Lu, D. M. J. Taylor and D. P. Hampshire, Supercond. Sci. Technol., vol. 21, pp. 105016, 2008. https://doi.org/10.1088/0953-2048/21/10/105016
- D. Arbelaez, A. Godeke and S. O. Prestemon, Supercond. Sci. Technol., vol. 22, pp. 025005, 2009. https://doi.org/10.1088/0953-2048/22/2/025005
- Y. Tsuchiya, H. Suzuki, T. Umeno, S. Machiya and K. Osamura, Meas. Sci. Technol., vol. 21, pp. 025904, 2010. https://doi.org/10.1088/0957-0233/21/2/025904
- K. Osamura, S. Machiya, H. Taniguchi, Y. Tsuchiya, H. Suzuki, T. Shoubu, S. Harjo, M. Sato, K. Miyashi, S. Ochiai and A. Nishimura, J. Cryo. Super. Soc. Jpn., vol. 48, pp. 617-624, 2013. https://doi.org/10.2221/jcsj.48.617
- N, Mitchell, Cryogenics, vol. 45, pp. 501-15, 2005. https://doi.org/10.1016/j.cryogenics.2005.06.003
- K. Osamura, S. Machiya, S. Ochiai, G. Osabe, K. Yamazaki and J. Fujikami, Supercond. Sci. Technol., vol. 26, pp. 045012, 2013. https://doi.org/10.1088/0953-2048/26/4/045012
- K. Osamura, S. Machiya, H. Suzuki, S. Ochiai, H. Adachi, N. Ayai, K. Hayashi and K. Sato, IEEE Transaction on Appl. Supercond., vol. 19, pp. 3026-3029, 2009. https://doi.org/10.1109/TASC.2009.2019020
- K. Osamura, S. Machiya, S. Ochiai, G. Osabe, K. Yamazaki and J. Fujikami, IEEE Trans Applied Supercond., vol. 23, pp. 6400504-7, 2013. https://doi.org/10.1109/TASC.2013.2243373
- S. Ochiai, H. Rokkaku, J. K. Shin, S. Iwamoto, H. Okuda, K. Osamura, M. Sato, A. Otto and A. Malozemoff, Supercond. Sci. Technol., vol. 21, pp. 075009-075021, 2008. https://doi.org/10.1088/0953-2048/21/7/075009
- http://superpower-inc.com/content/2g-hts-wire
- http://i-sunam.com/home/en_company,4,1,4,4
- K. Osamura, S. Machiya and D. Hampshire, Supercond. Sci. Technol., vol. 29, pp. 065019, 2016. https://doi.org/10.1088/0953-2048/29/6/065019
- K. Osamura, S. Machiya, Y. Tsuchiya and H. Suzuki, IEEE Trans Applied Supercond., vol. 20, pp. 1532-1536, 2010. https://doi.org/10.1109/TASC.2010.2042437
- K. Osamura, S. Machiya, Y. Tsuchiya, S. Harjo, H. Suzuki, T. Shobu, K. Kiriyama and M. Sugano, IEEE Transaction on Applied Supercond., vol. 21, pp. 3090-3093, 2011. https://doi.org/10.1109/TASC.2010.2086038