Fig. 1. Research flow chart
Fig. 2. Types of traffc signs
Fig. 3. Types of road signs
Fig. 4. Ground photography
Fig. 5. Data preprocessing
Fig. 6. Model accuracy
Fig. 7. Predicted images for dataset 1
Fig. 8. Predicted images for dataset 2
Table 1. Parameter values for ImageDataGenerator
Table 2. Training dataset quantity
Table 3. Predicted result for dataset 1
Table 4. Predicted result for dataset 2
References
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., and Kudlur, M. (2016), Tensorflow: A system for largescale machine learning, In 12th Symposium on Operating Systems Design and Implementation, 2-4 November, Savannah, USA, pp. 265-283.
- Famili, A., Shen, W. M., Weber, R., and Simoudis, E. (1997), Data preprocessing and intelligent data analysis, Intelligent Data Analysis, Vol. 1, No. 1, pp. 3-23. https://doi.org/10.3233/IDA-1997-1102
- Hong, I.Y. (2017), Land use classification using LBSN data and machine learning technique, Journal of the Korean Cartographic Association, Vol. 17, No. 3, pp. 59-67. (in Korean with English abstract) https://doi.org/10.16879/jkca.2017.17.3.059
- Kim, J.Y. (2015), Introducing google tensorflow, Journal of the Korean Computer Information Society, Vol. 23, No. 2, pp. 9-15. https://doi.org/10.9708/jksci.2015.20.7.009
- Lecun, Y., Bengio, Y., and Hinton, G. (2015), Deep learning, Nature, Vol. 521, No. 7553, 436. https://doi.org/10.1038/nature14539
- Lee, C.H. and Hong, I.Y. (2017), Investigation of topographic characteristics of parcels using UAV and machine learning, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 5, pp. 349-356. https://doi.org/10.7848/KSGPC.2017.35.5.349
- Lee, J.G., Lee, T.H., and Yoon, S.R. (2014), Machine learning for big data analytics, Journal of Korean Telecommunications Association(Information and Communication), Vol. 31, No. 11, pp. 14-26.
- Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F.E. (2017), A survey of deep neural network architectures and their applications, Neurocomputing, Vol. 234, pp. 11-26. https://doi.org/10.1016/j.neucom.2016.12.038
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and Rabinovich, A. (2015), Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7-12 June, Boston, USA, pp. 1-9.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016), Rethinking the Inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 27-30 June, Las Vegas, USA, pp. 2818-2826.
- Xia, X., Xu, C., and Nan, B. (2017), Inception-v3 for flower classification, In 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2-4 June, Chengdu, China, pp. 783-787.