DOI QR코드

DOI QR Code

Fabrication of Molybdenum Alloys with Improved Fracture Toughness through the Dispersion of Lanthanum Oxide

란타넘 산화물의 분산을 통해 향상된 파괴인성을 갖는 몰리브데넘 합금의 제조

  • Choi, Won June (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Jung Hyo (Agency for Defense Development) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 최원준 (한양대학교 신소재공학과) ;
  • 박천웅 (한양대학교 신소재공학과) ;
  • 박정효 (국방과학연구소) ;
  • 김영도 (한양대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과)
  • Received : 2019.06.15
  • Accepted : 2019.06.21
  • Published : 2019.06.28

Abstract

In this study, lanthanum oxide ($La_2O_3$) dispersed molybdenum ($Mo-La_2O_3$) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of $La_2O_3$ dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of $La_2O_3$ from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the $Mo-0.3La_2O_3$ specimen sintered by pressureless sintering is approximately 99%, and $La_2O_3$ with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is $19.46MPa{\cdot}m^{1/2}$, an improvement of approximately 40% over the fracture toughness of $13.50MPa{\cdot}m^{1/2}$ on a pure-Mo specimen without $La_2O_3$, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of $La_2O_3$.

Keywords

References

  1. J. H. Perepezko: Science, 326 (2009) 1068. https://doi.org/10.1126/science.1179327
  2. D. M. Dimiduk and J. H. Perepezko: MRS Bull., 28 (2003) 639. https://doi.org/10.1557/mrs2003.191
  3. M. S. El-Genk and J.-M. Tournier: J. Nucl. Mater., 340 (2005) 93. https://doi.org/10.1016/j.jnucmat.2004.10.118
  4. D. Sturm, M. Heilmaier, J. H. Schneibel, P. Jehanno, B. Skrotzki and H. Saage: Mater. Sci. Eng., A, 463 (2007) 107. https://doi.org/10.1016/j.msea.2006.07.153
  5. J. Wadsworth, T. G. Nieh and J. J. Stephens: Int. Mater. Rev., 33 (1988) 131. https://doi.org/10.1179/imr.1988.33.1.131
  6. B. V. Cockeram: Metall. Mater. Trans. A, 40 (2009) 2843. https://doi.org/10.1007/s11661-009-9919-9
  7. D. R. Trinkle and C. Woodward: Science, 310 (2005) 1665. https://doi.org/10.1126/science.1118616
  8. N. I. Medvedeva, Y. N. Gornostyrev and A. J. Freeman: Phys. Rev. B, 76 (2007) 212104. https://doi.org/10.1103/PhysRevB.76.212104
  9. M. K. Miller, E. A. Kenik, M. S. Mousa, K. F. Russell and A. J. Bryhan: Scr. Mater., 46 (2002) 299. https://doi.org/10.1016/S1359-6462(01)01242-8
  10. A. J. Mueller, R. Bianco and R. W. Buckman: Int. J. Refract. Met. Hard Mater., 18 (2000) 205. https://doi.org/10.1016/S0263-4368(00)00028-7
  11. G. J. Zhang, Y. J. Sun, R. M. Niu, J. Sun, J. F. Wei, B. H. Zhao and L. X. Yang: Adv. Eng. Mater., 6 (2004) 943. https://doi.org/10.1002/adem.200400072
  12. B. V. Cockeram: Mater. Sci. Eng. A, 418 (2006) 120. https://doi.org/10.1016/j.msea.2005.11.030
  13. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun and E. Ma: Nat. Mater., 12 (2013) 344. https://doi.org/10.1038/nmat3544
  14. C. H. Ahn, W. J. Choi, C. W. Park, S. Y. Lee and Y. D. Kim: Korean J. Mater. Res., 28 (2018) 166. https://doi.org/10.3740/MRSK.2018.28.3.166
  15. A.-E. Gobichon, J.-P. Auffredic and D. Louer: Solid State Ionics, 93 (1996) 51. https://doi.org/10.1016/S0167-2738(96)00498-5
  16. D. F. Stewart and W. W. Wendlandt: J. Phys. Chem., 63 (1959) 1330. https://doi.org/10.1021/j150578a038
  17. K. T. Faber and A. G. Evans: Acta Metall., 31 (1983) 565. https://doi.org/10.1016/0001-6160(83)90046-9