Figure 1. The equipment used for (a) friction test of composites and (b) durability test of the motor and ball nut pulley.
Figure 2. The effect of glass fiber content on (a) tensile strength, (b) flexural modulus, and (c) izod impact strength of PPS.
Figure 3. Effect of aramid fiber content on (a) tensile strength, (b) flexural modulus, (c) izod impact strength of PPS, and (d) tensile strength, (e) flexural modulus, (f) izod impact strength of PPS/20 wt% glass fiber composites.
Figure 4. Comparison of (a) tensile strength, (b) flexural modulus, (c) izod impact strength of PPS composites containing 20 wt% glass fiber/5 wt% aramid fiber, and (d) tensile strength, (e) flexural modulus, (f) izod impact strength of PPS composites containing 30 wt% glass fiber/5 wt% aramid fiber by addition of 5 wt% and 10 wt% graphite, PTFE, MoS2, WS2.
Figure 5. SEM images of the fractured surface of PPS/glass fiber/aramid fiber/solid lubricant composites.
Figure 7. The comparative picture of motor and ball nut pulley after durability test. Each pulley was manufactured using the PPS composites containing different solid lubricant.
Figure 6. (a) Representative friction evolution curve of PPS/glass fiber/aramid fiber/solid lubricant composites as a function of sliding time and (b) the comparative picture of each specimen before and after friction test.
References
- M. Y. Lyu and T. G. Choi, "Research Trends in Polymer Materials for Use in Lightweight Vehicles", Int. J. Pr. Eng. ManGT., 16, 213 (2015). https://doi.org/10.1007/s12541-015-0029-x
- K. Friedrich and A. A. Almajid, "Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications", Appl. Compos. Mater., 20, 107 (2013). https://doi.org/10.1007/s10443-012-9258-7
- J. Hirsch, "Aluminum in Innovative Light-Weight Car Design", Mater. Trans., 52, 818 (2011). https://doi.org/10.2320/matertrans.L-MZ201132
- G. S. Cole and A. M. Sherman, "Lightweight Materials for Automotive Applications", Mater. Charact., 35, 3 (1995). https://doi.org/10.1016/1044-5803(95)00063-1
- J. Gu, J. Du, J. Dang, W. Geng, S. Hu, and Q. Zhang, "Thermal Conductivities, Mechanical and Thermal Properties of Graphite Nanoplatelets/Polphenylene Sulfide Composites", RSC Adv., 4, 22101 (2014). https://doi.org/10.1039/C4RA01761G
- A. S. Rahate, K. R. Nemade, and S. A. Waghuley, "Polyphenylene Sulfide (PPS): State of the Art and Applications", Rev. Chem. Eng., 29, 471 (2013).
- H. W. Hill and D. G. Brady, "Properties, Environmental Stability, and Molding Characteristics of Polyphenylene Sulfide", Polym. Eng. Sci., 16, 831 (1976). https://doi.org/10.1002/pen.760161211
- J. P. Jog and V. M. Nadkarni, "Crystallization Kinetics of Polyphenylene Sulfide", J. Appl. Polym. Sci., 30, 997 (1985). https://doi.org/10.1002/app.1985.070300310
- A. Jacob, "BMW Counts on Carbon Fibre for its Megacity Vehicle", Reinf. Plast., 54, 38 (2010). https://doi.org/10.1016/S0034-3617(10)70173-9
- C. Alves, P. M. C. Ferrao, A. J. Silva, L. G. Reis, M. Freitas, L. B. Rodrigues, and D. E. Alves, "Ecodesign of Automotive Components Making Use of Natural Jute Fiber Composites", J. Clean. Prod., 18, 313 (2010). https://doi.org/10.1016/j.jclepro.2009.10.022
- J. Holbery and D. Houston, "Natural-Fiber-Reinforced Polymer Composites in Automotive Applications", JOM, 58, 80 (2006).
- P. Feraboli and A. Masini, "Development of Carbon/Epoxy Structural Components for a High Performance Vehicle", Compos. Part B, 35, 323 (2004). https://doi.org/10.1016/j.compositesb.2003.11.010
- J. H. Kim and J. B. Song, "Control Logic for and Electric Power Steering System Using Assist Motor", Mechatronics, 12, 447 (2002). https://doi.org/10.1016/S0957-4158(01)00004-6
- R. McCann, "Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System", SAE Paper, 2000-01-0817 (2000).
- J. S. Chen, "Control of Electric Power Steering", SAE Transactions, 107, 1702 (1998).
- V. Rodriguez, J. Sukumaran, A. K. Schlarb, and P. D. Baets, "Influence of Solid Lubricants on Tribological Properties of Polyetheretherketone (PEEK)", Tribol. Int., 103, 45 (2016). https://doi.org/10.1016/j.triboint.2016.06.037
-
M. Kalin, M. Zalaznik, and S. Novak, "Wear and Friction Behaviour of Poly-Ether-Ether-Ketone (PEEK) Filled with Graphene,
$WS_2$ , and CNT Nanoparticles", Wear, 332-333, 855 (2015). https://doi.org/10.1016/j.wear.2014.12.036 -
X. R. Zhang, X. Q. Pei, and Q. H. Wang, "Friction and Wear Studies of Polyimide Composites Filled with Short Carbon Fibers and Graphite and Micro
$SiO_2$ ", Mater. Des., 30, 4414 (2009). https://doi.org/10.1016/j.matdes.2009.04.002 -
M. H. Cho, S. Bahadur, and A. K. Pogosian, "Friction and Wear Studies Using Taguchi Method on Polyphenylene Sulfide Filled with a Complex Mixture of
$MoS_2$ ,$Al_2O_3$ , and Other Compounds", Wear, 258, 1825 (2005). https://doi.org/10.1016/j.wear.2004.12.017 - N. L. McCook, D. L. Burris, P. L. Dickrell, and W. G. Sawyer, "Cryogenic Friction Behavior of PTFE Based Solid Lubricant Composites", Tribol. Lett., 20, 109 (2005). https://doi.org/10.1007/s11249-005-8300-4
- J. L. Thomason, "Micromechanical Parameters from Macromechanical Measurements on Glass Reinforced Polyamide 6,6", Compos. Sci. Technol., 61, 2007 (2001). https://doi.org/10.1016/S0266-3538(01)00062-8
- J. L. Thomason, "The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene: 5. Injection Moulded Long and Short Fibre PP", Composites: Part A, 33, 1641 (2002). https://doi.org/10.1016/S1359-835X(02)00179-3