DOI QR코드

DOI QR Code

Formulation of a medium for the fruiting body development of Myxococcus stipitatus

Myxococcus stipitatus의 자실체 형성을 위한 배지 조성

  • Hyun, Hyesook (Department of Biotechnology, Hoseo University) ;
  • Choi, Juo (Department of Biotechnology, Hoseo University) ;
  • An, Dongju (Department of Biotechnology, Hoseo University) ;
  • Cho, Kyungyun (Department of Biotechnology, Hoseo University)
  • Received : 2019.04.01
  • Accepted : 2019.04.24
  • Published : 2019.06.30

Abstract

Myxococcus stipitatus, a myxobacterium, forms spherical fruiting bodies with stems on edaphic substrates in enrichment cultures for isolation. However, an agar medium on which purely isolated strains of M. stipitatus form this type of fruiting bodies has not been known until now. In this study, since M. stipitatus DSM 14675 forms a hemispherical fruiting body-like structure on CYS agar medium, the effects of CYS medium components on fruiting body formation were investigated. Based on the results obtained, an agar medium on which M. stipitatus forms spherical fruiting bodies with stems was developed. Additionally, a liquid medium in which M. stipitatus grows in a dispersed manner was also formulated in this investigation.

점액세균 Myxococcus stipitatus는 순수분리를 위한 농화배양 과정에서는 자연기질 표면에서 자루가 달린 구형 자실체를 형성한다. 하지만 순수 분리된 균주가 이러한 형태의 자실체를 형성하도록 하는 한천배지는 알려져 있지 않다. M. stipitatus DSM 14675 균주는 CYS 평판배지에서 반구형 자실체 유사 구조물을 형성하므로 CYS 배지 성분이 자실체 형성에 미치는 영향을 조사하였다. 그리고 이를 기초로 M. stipitatus 세포들이 구에 자루가 달린 자실체를 형성하는 한천배지 조성을 개발하였다. 본 연구에서는 또 이와 함께 M. stipitatus DSM 14675 균주가 분산하여 성장하는 액체배지도 개발하였다.

Keywords

MSMHBQ_2019_v55n2_117_f0001.png 이미지

Fig. 1. Growth of Myxococcus stipitatus DSM 14675 in various liquid media.

MSMHBQ_2019_v55n2_117_f0002.png 이미지

Fig. 2. Fruiting body development of Myxococcus stipitatus DSM 14675 on various solid media.

MSMHBQ_2019_v55n2_117_f0003.png 이미지

Fig. 3. Effects of CaCl2 and MgSO4 on the fruiting body development of Myxococcus stipitatus DSM 14675.

MSMHBQ_2019_v55n2_117_f0004.png 이미지

Fig. 4. Effects of agar content on the fruiting body development of Myxococcus stipitatus DSM 14675.

Table 1. Dispersed growth of Myxococcus strains in various culture media

MSMHBQ_2019_v55n2_117_t0001.png 이미지

References

  1. Campos JM, Geisselsoder J, and Zusman DR. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119, 167-178. https://doi.org/10.1016/0022-2836(78)90431-X
  2. Campos JM and Zusman DR. 1975. Regulation of development in Myxococcus xanthus: effect of 3': 5'-cyclicAMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72, 518-522. https://doi.org/10.1073/pnas.72.2.518
  3. Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104, 541-555. https://doi.org/10.1016/0022-2836(76)90119-4
  4. Cho K and Zusman DR. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34, 714-725. https://doi.org/10.1046/j.1365-2958.1999.01633.x
  5. Dawid W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24, 403-427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
  6. Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, and Wall D. 2016. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J. Bacteriol. 198, 994-1004. https://doi.org/10.1128/JB.00964-15
  7. Dworkin M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84, 250-257. https://doi.org/10.1128/JB.84.2.250-257.1962
  8. Grilione PL and Pangborn J. 1975. Scanning electron microscopy of fruiting body formation by myxobacteria. J. Bacteriol. 124, 1558-1565. https://doi.org/10.1128/JB.124.3.1558-1565.1975
  9. Hagen DC, Bretscher AP, and Kaiser D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64, 284-296. https://doi.org/10.1016/0012-1606(78)90079-9
  10. Huntley S, Kneip S, Treuner-Lange A, and Sogaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1, e0010013. https://doi.org/10.1128/genomeA.00100-13
  11. Kaiser D, Robinson M, and Kroos L. 2010. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2, a000380. https://doi.org/10.1101/cshperspect.a000380
  12. Kroos L, Kuspa A, and Kaiser D. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117, 252-266. https://doi.org/10.1016/0012-1606(86)90368-4
  13. Lang E and Stackebrandt E. 2009. Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int. J. Syst. Evol. Microbiol. 59, 2122-2128. https://doi.org/10.1099/ijs.0.003566-0
  14. Lee B, Lee C, and Cho K. 2003. Isolation of dispersed mutants from wild myxobacteria. Korean J. Microbiol. Biotechnol. 31, 342-347.
  15. Lee C, Shin H, and Cho K. 2014. Development of a quantitative induction method for Chondromyces crocatus fruiting body formation. Korean J. Microbiol. 50, 173-178. https://doi.org/10.7845/kjm.2014.4042
  16. Park SY, Lee BS, Kim JH, Lee CY, Jang E, and Cho K. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32, 218-223.
  17. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA.
  18. Shi W, Kohler T, and Zusman DR. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3, 258-269.
  19. Shimkets LJ, Dworkin M, and Reichenbach H. 2006. The myxobacteria. Prokaryotes 7, 31-115.
  20. Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44-51. https://doi.org/10.4014/kjmb.1210.10011
  21. Wall D, Kolenbrander PE, and Kaiser D. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181, 24-33. https://doi.org/10.1128/JB.181.1.24-33.1999