DOI QR코드

DOI QR Code

Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053

Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제

  • Kim, Junghee (Institute of Liberal Arts Education, Pukyong National University) ;
  • Oh, Hyun-Myung (Institute of Liberal Arts Education, Pukyong National University)
  • 김정희 (부경대학교 기초교양교육원) ;
  • 오현명 (부경대학교 기초교양교육원)
  • Received : 2019.01.09
  • Accepted : 2019.04.10
  • Published : 2019.06.30

Abstract

DNA methylation is involved in diverse processes in bacteria, including maintenance of genome integrity and regulation of gene expression. CcrM, the DNA methyltransferase conserved in Alphaproteobacterial species, carries out $N^6$-adenine or $N^4$-cytosine methyltransferase activities using S-adenosyl methionine as a co-substrate. Celeribacter marinus IMCC12053 from the Alphaproteobacterial group was isolated from a marine environment. Single molecule real-time sequencing method (SMRT) was used to detect the methylation patterns of C. marinus IMCC12053. Gibbs motif sampler program was used to observe the conversion of adenosine of 5'-GANTC-3' to $N^6$-methyladenosine and conversion of $N^4$-cytosine of 5'-GpC-3' to $N^4$-methylcytosine. Exocyclic DNA methyltransferase from the genome of strain IMCC12053 was chosen using phylogenetic analysis and $N^4$-cytosine methyltransferase was cloned. IPTG inducer was used to confirm the methylation activity of DNA methylase, and cloned into a pQE30 vector using dam-/dcm- E. coli as the expression host. The genomic DNA and the plasmid carrying methylase-encoding sequences were extracted and cleaved with restriction enzymes that were sensitive to methylation, to confirm the methylation activity. These methylases protected the restriction enzyme site once IPTG-induced methylases methylated the chromosome and plasmid, harboring the DNA methylase. In this study, cloned exocyclic DNA methylases were investigated for potential use as a novel type of GpC methylase for molecular biology and epigenetics.

DNA 메틸화는 유전체의 무결성의 유지 및 유전자 발현 조절과 같은 박테리아의 다양한 과정에 관여한다. Alphaproteobacteria 종에서 보존된 DNA 메틸 전이 효소인 CcrM은 S-아데노실 메티오닌을 공동 기질로 사용하여 $N^6$-아데닌 또는 $N^4$-시토신의 메틸 전이 효소 활성을 갖는다. Celeribacter marinus IMCC 12053는 해양 환경에서 분리된 알파프로테오박테리아로서 GpC 시토신의 외향고리 아민의 메틸기를 대체하여 $N^4$-메틸 시토신을 생산한다. 단일 분자 실시간 서열 분석법(SMRT)을 사용하여, C. marinus IMCC12053의 메틸화 패턴을 Gibbs Motif Sampler 프로그램을 사용하여 확인하였다. 5'-GANTC-3'의 $N^6$-메틸 아데노신과 5'-GpC-3'의 $N^4$-메틸 시토신을 확인하였다. 발현된 DNA 메틸전이 효소는 계통 발생 분석법을 사용하여 선택하여 pQE30 벡터에 클로닝 후 $dam^-/dcm^-$ 대장균을 사용하여 클로닝된 DNA 메틸라아제의 메틸화 활성을 확인하였다. 메틸화 효소를 코딩하는 게놈 DNA 및 플라스미드를 추출하고 메틸화에 민감한 제한 효소로 절단하여 메틸화 활성을 확인하였다. 염색체와 메틸라아제를 코드하는 플라스미드를 메틸화시켰을 때에 제한 효소 사이트가 보호되는 것으로 관찰되었다. 본 연구에서는 분자 생물학 및 후성유전학을 위한 새로운 유형의 GpC 메틸화 효소의 잠재적 활용을 위한 외향고리 DNA 메틸라제의 특성을 확인하였다.

Keywords

MSMHBQ_2019_v55n2_103_f0001.png 이미지

Fig. 1. Phylogeny of CcrM methyltransferases from Alphaproteobacteria with other groups of bacteria and archaea.

MSMHBQ_2019_v55n2_103_f0002.png 이미지

Fig. 2. Methylation sensitive digestion of plasmid DNA preparations of dam-/dcm- competent E. coli GM2163 transformed with IMCC12053_1885 (A).

Table 1. Sequence motif elements flanking m4C (N 4 -methylcytosine) and m6A (N 6 -methyladenosine) modifications in the IMCC12053 genome

MSMHBQ_2019_v55n2_103_t0001.png 이미지

Table 2. Comparison of DNA methyl transferases among some strains from Alphaproteobacteria subdivision

MSMHBQ_2019_v55n2_103_t0002.png 이미지

References

  1. Adhikari S and Curtis PD. 2016. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol. Rev. 40, 575-591. https://doi.org/10.1093/femsre/fuw023
  2. Baek K, Choi A, Kang I, and Cho JC. 2014. Celeribacter marinus sp. nov., isolated from coastal seawater. Int. J. Syst. Evol. Microbiol. 64, 1323-1327. https://doi.org/10.1099/ijs.0.060673-0
  3. Choi DH, Kwon YM, Kwon KK, and Kim SJ. 2015. Complete genome sequence of Novosphingobium pentaromativorans US6-$1^T$. Stand. Genomic Sci. 10, 107. https://doi.org/10.1186/s40793-015-0102-1
  4. Eberhard J, Oza J, and Reich NO. 2001. Cloning, sequence analysis and heterologous expression of the DNA adenine-($N^6$) methyltransferase from the human pathogen Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 195, 223-229. https://doi.org/10.1111/j.1574-6968.2001.tb10525.x
  5. Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comp. Biol. 7, e1002195. https://doi.org/10.1371/journal.pcbi.1002195
  6. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133-138. https://doi.org/10.1126/science.1162986
  7. Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, and Collier J. 2014. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res. 42, 3720-3735. https://doi.org/10.1093/nar/gkt1352
  8. Harrison A and Parle-McDermott A. 2011. DNA methylation: A timeline of methods and applications. Front. Genet. 2, 74. https://doi.org/10.3389/fgene.2011.00074
  9. Herring JL, Rogstad DK, and Sowers LC. 2009. Enzymatic methylation of DNA in cultured human cells studied by stable isotope incorporation and mass spectrometry. Chem. Res. Toxicol. 22, 1060-1068. https://doi.org/10.1021/tx900027w
  10. Jang HS, Shin WJ, Lee JE, and Do JT. 2017. CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes 8, 148. https://doi.org/10.3390/genes8060148
  11. Jeltsch A, Christ F, Fatemi M, and Roth M. 1999. On the substrate specificity of DNA methyltransferases. adenine-$N^6$ DNA methyltransferases also modify cytosine residues at position $N^4$. J. Biol. Chem. 274, 19538-19544. https://doi.org/10.1074/jbc.274.28.19538
  12. Jurkowska RZ and Jeltsch A. 2016. Mechanisms and biological roles of DNA methyltransferases and DNA methylation: From past achievements to future challenges. Adv. Exp. Med. Biol. 945, 1-17. https://doi.org/10.1007/978-3-319-43624-1_1
  13. Kang I, Jang H, Oh HM, and Cho JC. 2012. Complete genome sequence of Celeribacter bacteriophage P12053L. J. Virol. 86, 8339-8340. https://doi.org/10.1128/JVI.01153-12
  14. Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M, Wang S, Zhou B, Gonzalez D, Collier J, Turner SW, et al. 2013. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc. Natl. Acad. Sci. USA 110, E4658-E4667. https://doi.org/10.1073/pnas.1319315110
  15. Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  16. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, and Wootton JC. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208-214. https://doi.org/10.1126/science.8211139
  17. Li Y, Zou X, Ma F, Tang B, and Zhang CY. 2017. Development of fluorescent methods for DNA methyltransferase assay. Methods Appl. Fluoresc. 5, 012002. https://doi.org/10.1088/2050-6120/aa6127
  18. Loenen WA and Raleigh EA. 2014. The other face of restriction: modification-dependent enzymes. Nucleic Acids Res. 42, 56-69. https://doi.org/10.1093/nar/gkt747
  19. Luo YR, Kang SG, Kim SJ, Kim MR, Li N, Lee JH, and Kwon KK. 2012. Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J. Bacteriol. 194, 907. https://doi.org/10.1128/JB.06476-11
  20. Maier JA, Albu RF, Jurkowski TP, and Jeltsch A. 2015. Investigation of the C-terminal domain of the bacterial DNA-(adenine $N^6$)-methyltransferase CcrM. Biochimie 119, 60-67. https://doi.org/10.1016/j.biochi.2015.10.011
  21. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222-D226. https://doi.org/10.1093/nar/gku1221
  22. Mohapatra SS, Fioravanti A, and Biondi EG. 2014. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol. 22, 528-535. https://doi.org/10.1016/j.tim.2014.05.003
  23. Perez A, Castellazzi Chiara L, Battistini F, Collinet K, Flores O, Deniz O, Ruiz Maria L, Torrents D, Eritja R, Soler-Lopez M, et al. 2012. Impact of methylation on the physical properties of DNA. Biophys. J. 102, 2140-2148. https://doi.org/10.1016/j.bpj.2012.03.056
  24. Renbaum P, Abrahamove D, Fainsod A, Wilson GG, Rottem S, and Razin A. 1990. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M. SssI). Nucleic Acids Res. 18, 1145-1152. https://doi.org/10.1093/nar/18.5.1145
  25. Roberts RJ, Vincze T, Posfai J, and Macelis D. 2015. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43, D298-D299. https://doi.org/10.1093/nar/gku1046
  26. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP. 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542. https://doi.org/10.1093/sysbio/sys029
  27. Sohn JH, Kwon KK, Kang JH, Jung HB, and Kim SJ. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecularmass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int. J. Syst. Evol. Microbiol. 54, 1483-1487. https://doi.org/10.1099/ijs.0.02945-0
  28. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  29. van der Wijst MGP, van Tilburg AY, Ruiters MHJ, and Rots MG. 2017. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci. Rep. 7, 177. https://doi.org/10.1038/s41598-017-00263-z
  30. Vincze T, Posfai J, and Roberts RJ. 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res. 31, 3688-3691. https://doi.org/10.1093/nar/gkg526
  31. Xu M, Kladde MP, Van Etten JL, and Simpson RT. 1998. Cloning, characterization and expression of the gene coding for a cytosine-5-DNA methyltransferase recognizing GpC. Nucleic Acids Res. 26, 3961-3966. https://doi.org/10.1093/nar/26.17.3961
  32. Yang JA, Kang I, Moon M, Ryu UC, Kwon KK, Cho JC, and Oh HM. 2016. Complete genome sequence of Celeribacter marinus $IMCC12053^T$, the host strain of marine bacteriophage P12053L. Mar. Genomics 26, 5-7. https://doi.org/10.1016/j.margen.2015.11.012
  33. Yang JA, Kwon KK, and Oh HM. 2017. Complete genome sequence of Flavobacteriales bacterium strain UJ101 isolated from a xanthid crab. Genome Announc. 5, e01551-16.