DOI QR코드

DOI QR Code

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor

Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응

  • An, Jae-Yong (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Choul-Ho (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2018.07.09
  • Accepted : 2018.08.03
  • Published : 2019.06.30

Abstract

The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

본 연구의 목적은 트리글리세라이드 수소화 반응용 촉매로서 니켈, 실리카 및 알루미나로부터 제조한 Ni-SA 촉매의 적용 가능성을 semi-batch 반응기에서 검증하는 것이다. 실리카 및 알루미나 지지체 위에 공침법을 사용하여 니켈 전구체를 침전시켜서 Ni-SA 분말을 제조하였다. 이 분말을 수소분위기에서 환원시킨 후에, 유지경화유와 혼합한 후 냉각하여 Ni-SA 촉매 성형체를 제조하였다. 상업용 촉매인 Pricat 촉매와 본 연구에서 제조한 Ni-SA 촉매의 NiO 결정크기는 각각 $35{\AA}$$38{\AA}$으로 나타나서 두 촉매의 Ni의 분산도가 거의 유사함을 알 수 있었다. Ni-SA 촉매의 기공 부피와 기공 크기는 Pricat 촉매의 기공 부피와 기공 크기보다 훨씬 큰 것을 알 수 있다. 또한 Ni-SA 촉매의 평균 입자 크기는 Pricat 촉매에 비해 훨씬 작은 것으로 나타났다. 오일에 함침시켜서 태블릿 형태로 성형한 촉매를 사용하여 semi-batch 반응 장치에서 트리글리세라이드 수소화 반응을 수행한 결과, Ni-SA 촉매가 Pricat 촉매보다 반응 활성이 우수하다는 것을 알 수 있다. Ni-SA 촉매의 입자 크기가 Pricat 촉매의 입자 크기보다 훨씬 작고, Ni-SA 촉매의 기공 크기가 Pricat 촉매의 기공 크기보다 크기 때문에 반응 원료나 생성물의 확산 저항에 영향을 적게 받는다고 판단된다. 본 연구에서 제조한 Ni-SA 촉매는 트리글리세라이드 수소화 반응용 촉매로 상업적인 공정에서 사용 중인 Pricat 촉매를 대체할 수 있는 잠재력이 있음을 확인하였다.

Keywords

CJGSB2_2019_v25n2_101_f0001.png 이미지

Figure 1. Apparatus for reduction and molding of catalyst.

CJGSB2_2019_v25n2_101_f0002.png 이미지

Figure 2. Schematic diagram of semi-batch reactor for triglyceride hydrogenation.

CJGSB2_2019_v25n2_101_f0003.png 이미지

Figure 3. Particle size distribution of catalysts.

CJGSB2_2019_v25n2_101_f0004.png 이미지

Figure 4. XRD patterns of Ni-SA and Pricat.

CJGSB2_2019_v25n2_101_f0005.png 이미지

Figure 5. N2 adsorption-desorption isotherms of catalysts: (a) Ni-SA, (b) Pricat.

CJGSB2_2019_v25n2_101_f0006.png 이미지

Figure 6. TGA analysis of Ni-SA and Pricat catalyst.

CJGSB2_2019_v25n2_101_f0007.png 이미지

Figure 7. H2 consumption during triglyceride hydrogenation over Ni-SA and Pricat catalyst.

Table 1. XRF analysis results of catalysts

CJGSB2_2019_v25n2_101_t0001.png 이미지

Table 2. Physico-chemical properties of catalysts

CJGSB2_2019_v25n2_101_t0002.png 이미지

References

  1. Babaee, Z., Nikoopour, H., and Safafar, H., "A Comparison of Commercial Nickel Catalysts Effects on Hydrogenation of Soybean Oil," World Appl. Sci. J., 2, 621-626 (2007).
  2. Barrio, V. L., Arias, P. L., Cambra, J. F., Guemez, M. B., Pawelec, B., and Fierro, J. L. G., "Aromatics Hydrogenation on Silica-Alumina Supported Palladium-Nickel Catalysts," Appl. Catal., A: General, 242, 17-30 (2003). https://doi.org/10.1016/S0926-860X(02)00489-1
  3. Allen, R. R., "World Conference on Soya Processing and Utilization," JAOCS, 166-169 (1981).
  4. Patterson, H. B. W., Hydrogenation of Fats and Oils, Applied Science Publishers, London (1990).
  5. Martin, G. A., and Dalmon, J. A., "Benzene Hydrogenation over Nickel Catalysts at Low and High Temperatures: Structure-Sensitivity and Copper Alloying Effects," J. Catal., 75, 233-242 (1982). https://doi.org/10.1016/0021-9517(82)90205-6
  6. Tarrer, A. R., Yoon, H. H., and Wagh, V. P., "Deactivation of a Hydrogenation Catalyst: Importance of Mass Transfer," Am. Chem. Soc., Div. Fuel., 33, 25-30 (1988).
  7. Kravtsov, A. V., Zuev, V. A., Kozlov, I. A., Milishnikov, A. V., Ivanchina, E. D., Uriev E. M., Ivashkina, E. N., Fetisova, V. A., and Shnidorova, I. O., "Development of Control System for Nickel-Containing Catalyst in Dienes Hydrogenation," Pet. Coal, 51, 248-254 (2009).
  8. Lee, D., Kim, D., Kang, M., Kim, J. M., and Lee, I., "Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition," Bull. Korean Chem. Soc., 28, 2034-2040 (2007). https://doi.org/10.5012/bkcs.2007.28.11.2034
  9. Dusan J., Radoman R. b., Ljiljana M., Miroslav S., and Branislav M., "Nickel hydrogenation catalyst for tallow hydrogenation and for the selective hydrogenation of sunflower seed oil and soybean oil," Catal. Today, 43, 21-28 (1998). https://doi.org/10.1016/S0920-5861(98)00133-3
  10. Brown, C. A., "Catalytic Hydrogenation. V. The Reaction of Sodium Borohydride with Aqueous Nickel Salts. P-1 Nickel Boride, a Convenient, Highly Active Nickel Hydrogenation Catalyst," J. Org. Chem., 56, 1900-1904 (1970). https://doi.org/10.1021/jo00831a039
  11. Kim, T., Cha, I., Lee, H., and Ahn, W., "A Study on the Preparation of Oil Hydrogenation Catalysts Using Nickel Extracted from Spent Catalysts," J. Korean Ind. Eng. Chemistry, 5, 925-934 (1994).
  12. Satterfield, C. N., "Heterogeneous Catalysis in Practice," McGraw-Hill Book Company, New York, 80-83 (1980).
  13. Kravtsov, A. V., Khadartsev, A. C., Shatovkin, A. A., Milishnikov, A. V., Ivanchina, E. D., Ivashkina, E. M., and Uriev, E. N., "Computer Modeling of Higher Paraffins Dehydrogenation Process on Pt Catalysts, Oil Process. Oil Chem., 35-40 (2007).
  14. Gonçalves, N. S., Carvalho, J. A., Lima, Z. M., and Sasaki, J. M., "Size-strain study of NiO nanoparticles by X-ray powder diffraction line broadening", Mater. Lett., 72, 36-38 (2012). https://doi.org/10.1016/j.matlet.2011.12.046
  15. Zhao, A., Ying, W., Zhang, H., Ma, H., and Fang, D., "$Ni-Al_2O_3$ catalysts prepared by solution combustion method for syngas methanation", Catal. Comm., 17, 34-38 (2012). https://doi.org/10.1016/j.catcom.2011.10.010
  16. Jeon J. K. Koh, S. T., Park, Y. K., Suh, D. J., and Inm, S. K., "Effect of Magnesium Promoter on Nickel/Kieselguhr Catalysts in Triglyceride Oil Hydrogenation", J. Ind. Eng. Chem., 11, 83-87 (2005).