DOI QR코드

DOI QR Code

Elicitation of drought alternatives based on Water Policy Council and the role of Shared Vision Model

협의체 기반 가뭄 대응 대안 도출과 비전공유모형의 역할

  • Kim, Gi Joo (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Seo, Seung Beom (Division for Integrated Water Management, Korea Environment Institute) ;
  • Kim, Young-Oh (Department of Civil & Environmental Engineering, Seoul National University)
  • 김기주 (서울대학교 공과대학 건설환경공학부) ;
  • 서승범 (한국환경정책.평가연구원 통합물관리연구실) ;
  • 김영오 (서울대학교 공과대학 건설환경공학부)
  • Received : 2019.03.07
  • Accepted : 2019.06.05
  • Published : 2019.06.30

Abstract

The numbers of multi-year droughts due to climate change are increasing worldwide. Boryeong Dam, located in Chungcheongnam-do, South Korea, was also affected by a 4-year drought from 2014 to 2017. Since traditional unilateral decision making processes to alleviate drought damage have, until now, resulted in conflicts between many of the involved groups, the need for active participation from both stakeholders and policymakers is greater than before. This study introduced Shared Vision Planning, a collaborative decision making process that involves participation from various groups of stakeholders, by organizing Water Policy Council for Climate Change Adaptation in Chungcheongnam-do. A Shared Vision Planning Model was then developed with a system dynamics software by working together with relevant stakeholders to actively reflect their requests through three council meetings. Multiple simulations that included various future climate change scenarios were conducted, and future drought vulnerability analysis results of Boryeong Dam and districts, in terms of frequency, length, and magnitude, were arrived at. It was concluded that Boryeong Dam was more vulnerable to future droughts than the eight districts. While the total water deficit in the eight districts was not so significant, their water deficit in terms of spatial discordance was proved to be more problematic. In the future, possible alternatives to the model will be implemented so that stakeholders can use it to agree on a policy for possible conflict resolutions.

기후변화로 인한 다년 가뭄은 전세계적으로 증가하는 추세이며, 충청남도에 위치한 보령댐 또한 2014년부터 2017년까지 지속된 다년 가뭄으로 인해 큰 피해를 받았다. 다양한 가뭄 피해 저감 정책 설립 과정에 있어 일방적인 하향식 의사결정 과정을 바탕으로 진행된 정책은 이해당사자간의 갈등을 야기했기에, 이를 방지하기 위해서는 이해당사자와 정책결정자들간의 참여형 의사결정 과정이 필수적이다. 본 연구에서는 다양한 그룹으로 구성된 이해당사자의 참여를 독려하는 참여형 의사결정 방식 중 하나인 비전공유계획을 충청남도 기후변화 적응 물관리정책 협의회를 통해 체계적으로 적용하였다. 또한, 비전공유계획의 핵심 요소인 비전공유모형을 시스템 다이내믹스 모형으로 개발하였고, 총 3회의 소위원회를 거쳐 이해당사자의 요청사항에 맞추어 모형을 보완하였다. 구축한 모형을 활용하여 미래에 발생 가능한 가뭄의 위험을 포함하고 있는 기후변화 시나리오로 모의하였고, 보령댐과 보령댐 계통 지자체의 가뭄으로 인한 취약성을 빈도, 지속기간, 크기 개념의 평가지표로 표현하였다. 모의 결과, 용수 공급원인 보령댐은 용수 수급처인 지자체보다 가뭄에 상대적으로 더 취약하며, 8개 지자체 중 가뭄 대응 대책이 주로 계획되어 있는 지역과 모의에서 추정한 가뭄 발생 지역이 일치하지 않음을 확인하였다. 모의 결과를 향후 협의회 회의에서 이해당사자와 공유하고, 댐과 지자체의 입장에서 용수 부족을 해소할 방안을 모형에 적용함으로써 미래 정책 결정 및 갈등 해소를 위해 개발한 비전공유모형을 이용할 수 있음을 제안하였다.

Keywords

SJOHCI_2019_v52n6_429_f0001.png 이미지

Fig. 1. Three pillars of Shared Vision Planning (USACE, 2010)

SJOHCI_2019_v52n6_429_f0002.png 이미지

Fig. 2. Study basin: Boryeong Dam and eight districts

SJOHCI_2019_v52n6_429_f0003.png 이미지

Fig. 3. Configuration of Water Management Policy Council for Climate Change Adaptation in Chungcheongnam-do (Chungcheongnam-do, 2016)

SJOHCI_2019_v52n6_429_f0004.png 이미지

Fig. 5. Boryeong Dam outflow comparison: simulated vs. observed

SJOHCI_2019_v52n6_429_f0005.png 이미지

Fig. 6. Response function for the worst GCM scenario

SJOHCI_2019_v52n6_429_f0006.png 이미지

Fig. 7. Comparison of future drought vulnerability and future alternatives of districts

SJOHCI_2019_v52n6_429_f0007.png 이미지

Fig. 4. The STELLA Shared Vision Model for Boryeong Dam water supply

Table 1. Monthly average inflow of Boryeong Dam

SJOHCI_2019_v52n6_429_t0001.png 이미지

Table 2. Selected GCM scenarios

SJOHCI_2019_v52n6_429_t0002.png 이미지

Table 3. Classification of selected performance indices

SJOHCI_2019_v52n6_429_t0003.png 이미지

Table 4. Inflow and demand scenarios of each run

SJOHCI_2019_v52n6_429_t0004.png 이미지

References

  1. Chungcheongnam-do (2015). Comprehensive plan for water resources in Chungcheongnam-do. Chungcheongnam-do. pp. IV-20-IV-92.
  2. Chungcheongnam-do (2016). Minutes for inaugural assembly climate change adaptation council in Chungcheongnam-do. Korean.
  3. Chungcheongnam-do (2017). Altering the drought action for drought overcoming, accessed 21 Febuary 2019, .
  4. Chungcheongnam-do (2018). Local water supply secure plan for diversification of districts. Korean.
  5. Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S. (2011). "Development and evaluation of an Earth-System model-HadGEM2." Geoscientific Model Development, Vol. 4, pp. 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
  6. Davini, P., Cagnazzo, C., Fogli, P. G., Gualdi, S., and Navarra, A. (2014). "European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model." Climate Dynamics, Vol. 43, No. 1-2, pp. 71-85. https://doi.org/10.1007/s00382-013-1873-y
  7. Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., and Benshila, R. (2013). "Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5." Climate Dynamics, Vol. 40, No. 9-10, pp. 2123-2165. https://doi.org/10.1007/s00382-012-1636-1
  8. Eum, H.-I., and Cannon, A. J. (2017). "Intercomparison of projected changes in climate extremes for South Korea: Application of trend preserving statistical downscaling methods to the CMIP5 ensemble." International Journal of Climatology, Vol. 37, pp. 3381-3397. https://doi.org/10.1002/joc.4924
  9. Forrester (1961). Industrial dynamics. Cambridge, The MIT Press.
  10. Forrester (1969). Urban dynamics. Cambridge, The MIT Press.
  11. Forrester (1971). World dynamics. Cambridge, Wright-Allen Press.
  12. Global Water Partnership (2018). Shared Vision Planning Approach Applied in Tisza River Basin, accessed 13 February 2019, .
  13. Hashimoto, T., Loucks, D. P., and Stedinger, J. R. (1982). "Reliability, resiliency, robustness, and vulnerability: criteria for water resource systems." Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  14. Jeong, H.-O., Han, J.-I., and Park, S.-W. (2012). "Development of hydrological Shared Vision Model for conflict mediation of dam construction." Journal of Korea Water Resources Association. KWRA, Vol. 45, No. 10, pp. 1009-1022. https://doi.org/10.3741/JKWRA.2012.45.10.1009
  15. Jeong, W. H., and Kim, Y. I. (2017). Evaluation of Boryeong Dam water supply capacity and drought policy suggestions. ChungNam Report Vol. 278, ChungNam Institute, pp. 1-16.
  16. Jeong, W. H., Rho, S. H., and Kim, Y. I. (2016). Evaluation of Boryeong Dam water supply capacity and drought action plan. Strategic Research 2016-33. Chungnam Institute. pp. 38-41.
  17. Keyes, A. M., and Palmer, R. N. (1995). "An assessment of Shared Vision Model effectiveness in water resources planning." Proceedings from the 22nd Annual National Conference, Water Resources Planning and Management Division of ASCE, Cambridge, Massachusetts, May 1995, pp. 532-535.
  18. K-water (2017). Boryeong Dam conduit operation standards. Korean.
  19. Lee, K. S., and Chung, E. S. (2011). "Planning and implementation for integrated watershed management." Journal of The National Academy of Sciences, Republic of Korea. Vol. 50, No. 2, pp. 153-191.
  20. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). National Water Supply Adjustment Standards. Korean.
  21. Moon, T. H. (2002). "Issues and methodological status of system dynamics." Journal of Korean System Dynamics Society, KSDS, Vol. 3, No. 1, pp. 61-77.
  22. MyWater (2016). Test operations of drought forecast and future plans. MyWater Issue Report Vol. 2006-3. pp. 1-15.
  23. MyWater (2019). K water, accessed 13 February 2019, .
  24. Palmer, R. N., Keyes, A. M., and Fisher, S. (1993). "Empowering stakeholders through simulation in water resources planning." Proceedings of the 20th anniversary conference: Water management in the '90s. A time for innovation. ASCE, Seattle, Washington, pp. 451-454.
  25. Richardson, G. P. (1999). "Reflections for the future of system dynamics." The Journal of Operational Research Society. ORS, Vol. 50, No. 4, pp. 440-449. https://doi.org/10.1057/palgrave.jors.2600749
  26. Ryu, J. N., Kang, H. S., Kim, M. A., and Shin, H. N. (2015). Review of water budget management methods using casual loop. Working Paper, 2015-12, Korea Environment Institute, Korean, pp. 35-55.
  27. Seo, S. B., and Kim, Y.-O. (2018). "Impact of spatial aggregation level of climate indicators on a national-level selection for representative climate change scenarios." Sustainability, Vol. 10, No. 7, pp. 2409. https://doi.org/10.3390/su10072409
  28. Seo, S. B., Kim, Y.-O., Kim, Y., and Eum, H.-I. (2018). "Selecting climate change scenarios for regional hydrologic impact studies based on climate extreme indices." Climate Dynamics, Vol. 53, No. 3-4, pp. 1595-1611.
  29. Sugawara, M. (1995). Tank model. in computer models of watershed hydrology. Water Resources Publications, Littleton, CO, USA.
  30. United States Army Corps of Engineers (USACE) (2010). How to conduct a shared vision planning process. IWR Report 10-R-6. Alexandria, Virginia, pp. 1-8.
  31. Walker, W. E., Mayer, I. S., and Hagen, E. R. (2010). "Shared vision planning as policy analysis: Opportunities for shared learning and methodological innovation." Proceedings from World Environmental and Water Resources Congress 2010. EWRI, Providence, Rhode Island, pp. 2204-2222.
  32. Wang, X. (2013). A dynamic water balance model for drought management: A case study of the Invitational Drought Tournament. M. S. dissertation, University of Alberta, Edmonton, Alberta, Canada, pp. 45-51.
  33. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M. (2011). "MICROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments." Geoscientific Model Development, Vol. 4, pp. 845-872. https://doi.org/10.5194/gmd-4-845-2011
  34. Werick, W. (2000). "The future of shared vision planning." Joint Conference in Water Resources Engineering and Water Resources Planning and Management 2000, ASCE, Minneapolis, MN.
  35. Wu (2012). "A mass-flux cumulus parametrization scheme for large-scale models: description and test with observations." Climate Dynamics, Vol. 38, No. 3-4, pp. 725-744. https://doi.org/10.1007/s00382-011-0995-3
  36. Xi, X., and Kim, L. P. (2013). "Using system dynamics for sustainable water resources management in Singapore." Procedia Computer Science, Atlanta, Vol. 16, pp. 157-166. https://doi.org/10.1016/j.procs.2013.01.017