DOI QR코드

DOI QR Code

Role and Principle of Lowering Storage Temperature : Methane Emission and Microbial Community of Cattle Manure

저온 저장의 역할과 원리: 우분의 메탄 배출과 미생물 군집

  • Im, Seongwon (Department of Civil Engineering, Inha University) ;
  • Oh, Sae-Eun (Department of Civil and Environmental Engineering, Hanbat University) ;
  • Hong, Do-giy (Seongji Environment Company) ;
  • Kim, Dong-Hoon (Department of Civil Engineering, Inha University)
  • 임성원 (인하대학교 사회인프라공학과) ;
  • 오세은 (한밭대학교 건설환경공학과) ;
  • 홍두기 ((주)성지환경건설) ;
  • 김동훈 (인하대학교 사회인프라공학과)
  • Received : 2019.06.14
  • Accepted : 2019.06.23
  • Published : 2019.06.30

Abstract

Livestock manure is a significant source for greenhouse gas (GHG) emission, and a huge amount of GHG emission is generated during its storage. In the present work, lowering temperature was attempted to mitigate methane ($CH_4$) emission from cattle manure (CM) with high solid content. CM was stored for 60 d at $15-35^{\circ}C$ ($5^{\circ}C$ interval). $CH_4$ emission reached $63.6{\pm}3.6kg\;CO_2\;eq./ton\;CM$ at $35^{\circ}C$, which was reduced to $51.6{\pm}1.8$, $24.1{\pm}4.4$, $14.9{\pm}0.5$, and $3.7{\pm}0.1kg\;CO_2\;eq./ton\;CM$ at 30, 25, 20, and $15^{\circ}C$, respectively. After storage, 30% of COD reduction was observed in the CM stored at $35^{\circ}C$, while the COD removal decreased to only 6% at $15^{\circ}C$. It was found that only 3-11% of COD removal was done by anaerobic process, while the rest of COD removal was done by aerobic biological process. Methanobrevibacter and Methanolobus were found to be the dominant species in the CM, and the dominance of Methanolobus psychrophilus increased at lower storage temperature. Specific methanogenic activity test results showed that the inhibition by low temperature was temporal.

가축분뇨 유래 온실가스 배출량은 상당하며, 특히 저장 기간 중에 메탄을 포함한 상당량의 온실가스가 배출된다. 본 연구에서는 고형물 농도가 높은 우분의 저장 시 메탄 배출량 저감을 위해 낮은 온도 저장의 영향을 살펴보았다. 우분이 60일 저장되는 동안 배출된 최대 메탄의 양은 $35^{\circ}C$ 조건에서 $63.6{\pm}3.6kg\;CO_2\;eq./ton\;CM$으로 나타났으며 저장온도가 30, 25, 20, $15^{\circ}C$로 낮아질수록 각각 $51.6{\pm}1.8$, $24.1{\pm}4.4$, $14.9{\pm}0.5$, $3.7{\pm}0.1kg\;CO_2\;eq./ton\;CM$으로 감소하였다. 우분을 $35^{\circ}C$에서 저장하는 동안 30%의 COD가 감소하였지만 $15^{\circ}C$에서는 단 6%의 COD만이 감소되어 우분 내 유기물의 손실은 저장온도가 높을수록 증가하였다. 제거된 COD의 3~10%만이 메탄으로 전환이 되었으며 대부분은 호기 분해에 의해 진행된 것으로 사료된다. 우분의 주요 우점종으로는 Methanobrevibacter과 Methanolobus이 발견되었고 저장온도가 낮아질수록 저온 메탄생성균인 Methanolobus psychrophilus의 우점율(48%, $15^{\circ}C$)이 증가하였다. 수소를 이용한 SMA 실험 결과, 25, $15^{\circ}C$에서 저장한 메탄생성균의 지체기간은 10~11일, 최대 메탄생성속도는 22 mL/g VSS/d으로 $35^{\circ}C$에 저장한 경우(1일, 12~17 mL/g VSS/d)보다 지체기간은 증가하였지만 메탄생산속도는 높은 것으로 나타났다. 이런 결과로 미루어보아 저온저장은 메탄생성균에게 일시적인 저해는 줄 수 있지만, 적절한 조건이 주어지면 그 활성도는 다시 회복될 수 있음을 알 수 있었다.

Keywords

DOGSBE_2019_v27n2_41_f0001.png 이미지

Fig. 1. CH4 emission from cattle manure stored at different storage temperatures for 60 d.

DOGSBE_2019_v27n2_41_f0002.png 이미지

Fig. 2. Microbial community structure at genus level for archaea from fresh and stored cattle manure (storage temperature: 35, 25 and 15℃).

DOGSBE_2019_v27n2_41_f0003.png 이미지

Fig. 3. The amount of H2 residual in the headspace of the bottles.

DOGSBE_2019_v27n2_41_f0004.png 이미지

Fig. 4. The variation of SCOD concentration in CH4 fermentative broth in H2/CO2 fed tests during operation.

Table 1. Properties of Cattle Manures Before and After 60 d of Storage at the Temperatures Between 15 to 35℃

DOGSBE_2019_v27n2_41_t0001.png 이미지

Table 2. Archaeal Communities in Species Level Identification of the Dominant Sequences

DOGSBE_2019_v27n2_41_t0002.png 이미지

Table 3. Batch Anaerobic Digestion Performance with Cattle Manure Stored at 35, 25 and 15℃ and H2/CO2, and Kinetic Results Obtained by Using the Modified Gompertz Equation.

DOGSBE_2019_v27n2_41_t0003.png 이미지

References

  1. Gao, Z., Lin, Z., Yang, Y., Ma, W., Liao, W., Li, J., Cao, Y. and Roelcke, M., "Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961-2010", Environ. Res., 135, pp. 111-119. (2014). https://doi.org/10.1016/j.envres.2014.08.033
  2. Dunkley, C.S. and Dunkley, K.D., "Review greenhouse gas emissions from livestock and poultry", Agric. Food Anal. Bacteriol., 3(1), pp. 17-29. (2013).
  3. Petersen, S.O., Dorno, N., Lindholst, S., Feilberg, A. and Eriksen, J., "Emissions of $CH_4,\;N_2O,\;NH_3$ and odorants from pig slurry during winter and summer storage", Nutr. Cycl. Agroecosyst., 95(1), pp. 103-113. (2013). https://doi.org/10.1007/s10705-013-9551-3
  4. Sommer., S.G., Petersen, S.O. and Moller, H.B., "Algorithms for calculating methane and nitrous oxide emissions from manure management", Nutr. Cycl. Agroecosyst., 69(2), pp. 143-154. (2004). https://doi.org/10.1023/B:FRES.0000029678.25083.fa
  5. Le Mer, J. and Roger, P., "Production, oxidation, emission and consumption of methane by soil: A review", Eur. J. Soil Biol., 37(1), pp. 25-50. (2001). https://doi.org/10.1016/S1164-5563(01)01067-6
  6. Clemens, J., Trimborn, M., Weiland, P. and Amon, B., "Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry", Agr. Ecosyst. Environ., 112(2), pp. 171-177. (2006). https://doi.org/10.1016/j.agee.2005.08.016
  7. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch., "Emissions of $NH_3,\;N_2O\;and\;CH_4$ from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading)", Nutr. Cycl. Agroecosys., 60(103), pp. 103-113. (2001). https://doi.org/10.1023/A:1012649028772
  8. Shin, S.-R., Im, S., Mostafa, A., Lee, M.-K. Yun, Y.-M., Oh, S.-E. and Kim, D.-H., "Effects of pig slurry acidification on methane emissions during storage and subsequent biogas production", Water Res., 152(1), pp. 234-240. (2019). https://doi.org/10.1016/j.watres.2019.01.005
  9. Masse, D.I., Masse, L., Claveau, S., Benchaar, C. and Thomas, O., "Methane emissions from manure storages", T. ASABE., 51(5), pp. 1775-1781. (2008). https://doi.org/10.13031/2013.25311
  10. Eriksen, J., Sorensen, P. and Elsgaard, L., "The fate of sulfate in acidified pig slurry during storage and following application to cropped soil", J. Environ. Qual., 37(1), pp. 280-286. (2008). https://doi.org/10.2134/jeq2007.0317
  11. Regueiro, I., Coutinho, J. and Fangueiro, D., "Alternatives to sulfuric acid for slurry acidification: impact on slurry composition and ammonia emissions during storage", J. Clean. Prod., 131(10), pp. 296-307. (2016). https://doi.org/10.1016/j.jclepro.2016.05.032
  12. Rennie, T.J., Gordon, R.J., Smith, W.N. and VanderZaag, A.C., "Liquid manure storage temperature is affected by storage design and management practices-A modelling assessment", Agr. Ecosyst. Environ., 260(1), pp. 47-57. (2018). https://doi.org/10.1016/j.agee.2018.03.013
  13. Elsgaard, L., Olsen, A.B. and Petersen, S.O., "Temperature response of methane production in liquid manures and co-digestates", Sci. Total Environ., 539(1), pp. 78-84. (2016). https://doi.org/10.1016/j.scitotenv.2015.07.145
  14. Hwang, B.-S., Jo, I.-H. and Son, J.-H., "Effects of mixong ratios of cow manure and stall bedding on physico-chemical characteristics and earthworm (Eisenia foetida) survival", Korean J. Organic agri., 22(1), pp. 183-195. (2014). https://doi.org/10.11625/KJOA.2014.22.1.183
  15. Kim, D.-H., Han, S.-K., Kim, S.-H. and Shin, H.-S., "Effect of gas sparging on continuous fermentative hydrogen production", Int. J. Hydrogen Energ., 31(15), pp. 2158-2169. (2006). https://doi.org/10.1016/j.ijhydene.2006.02.012
  16. Kim, D.-H., Kim, S.-H. and Shin, H.-S., "Hydrogen fermentation of food waste without inoculum addition", Enzyme Microb. Tech., 45(3), pp. 181-187. (2009). https://doi.org/10.1016/j.enzmictec.2009.06.013
  17. Liu, C., Guo, T., Chen, Y., Meng, Q., Zhu, C. and Huang, H., "Physicochemical characteristics of stored cattle manure affect methane emissions by inducing divergence of methanogens that have different interactions with bacteria", Agr. Ecosyst. Environ., 253(1), pp. 38-47. (2018). https://doi.org/10.1016/j.agee.2017.10.020
  18. Rea S., Bowman, J.P., Popovski, S., Pimm, C. and Wright, A.G., "Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth", Int. J. Syst. Evol. Micr., 57(3), pp. 450-456. (2007). https://doi.org/10.1099/ijs.0.63984-0
  19. Miller, T.L. and Lin, C., "Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov..", Int. J. Syst. Evol. Micr., 52(3), pp. 819-822. (2002). https://doi.org/10.1099/00207713-52-3-819
  20. Zhang, G., Jiang, N., Liu, X. and Dong, X., "Methanogenesis from Methanol at Low Temperatures by a Novel Psychrophilic Methanogen, "Methanolobus psychrophilus" sp. nov., Prevalent in Zoige Wetland of the Tibetan Plateau", Appl. Environ. Microb., 74(19), pp. 6114-6120. (2008). https://doi.org/10.1128/AEM.01146-08
  21. Collins, G., Woods, A., McHugh, S., Carton, M.W. and O'Flaherty, V., "Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters", FEMS Microbiol. Ecol., 46(2), pp. 159-170. (2003). https://doi.org/10.1016/S0168-6496(03)00217-4
  22. Shimizu, S., Ueno, A., Tamamura, S., Naganuma, T. and Kaneko, K., "Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation", Int. J. Syst. Evol. Micr., 63(11), pp. 4320-4323. (2013). https://doi.org/10.1099/ijs.0.053520-0
  23. Barret, M., Gagnon, N., Topp, E., Masse, L., Masse, D.I. and Talbot, G., "Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity", Water Res., 47(2), pp. 737-746. (2013). https://doi.org/10.1016/j.watres.2012.10.047