DOI QR코드

DOI QR Code

Evaluation of the taxonomic rank of the terrestrial orchid Cephalanthera subaphylla based on allozymes

  • CHUNG, Mi Yoon (Division of Life Science and the Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • SON, Sungwon (Division of Plant Resources, Korea National Arboretum) ;
  • CHUNG, Jae Min (Division of Plant Resources, Korea National Arboretum) ;
  • LOPEZ-PUJOL, Jordi (Botanic Institute of Barcelona (IBB,CSIC-ICUB)) ;
  • YUKAWA, Tomohisa (Tsukuba Botanical Garden, National Museum of Nature and Science) ;
  • CHUNG, Myong Gi (Department of Biology and RINS, Gyeongsang National University)
  • Received : 2019.05.26
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

The taxonomic rank of the tiny-leaved terrestrial orchid Cephalanthera subaphylla Miyabe & $Kud{\hat{o}}$ has been somewhat controversial, as it has been treated as a species or as an infraspecific taxon, under C. erecta (Thunb.) Blume [C. erecta var. subaphylla (Miyabe & $Kud{\hat{o}}$) Ohwi and C. erecta f. subaphylla (Miyabe & $Kud{\hat{o}}$) M. Hiro]. Allozyme markers, traditionally employed for delimiting species boundaries, are used here to gain information for determining the taxonomic status of C. subaphylla. To do this, we sampled three populations of five taxa (a total of 15 populations) of Cephalanthera native to the Korean Peninsula [C. erecta, C. falcata (Thunb.) Blume, C. longibracteata Blume, C. longifolia (L.) Fritsch, and C. subaphylla]. Among 20 putative loci resolved, three were monomorphic (Dia-2, Pgi-1, and Tpi-1) across the five species. Apart from C. longibracteata, there was no allozyme variation within the remaining four species. Of the 51 alleles harbored by these 17 polymorphic loci, each of the 27 alleles at 14 loci was unique to a single species. Accordingly, we found low average values of Nei's genetic identities (I) between ten species pairs (from I = 0.250 for C. erecta versus C. longifolia to I = 0.603 for C. falcata vs. C. longibracteata), with C. subaphylla being genetically clearly differentiated from the other species (from I = 0.349 for C. subaphylla vs. C. longifolia to 0.400 for C. subaphylla vs. C. falcata). These results clearly indicate that C. subaphylla is not genetically related to any of the other taxa of Cephalanthera that are native to the Korean Peninsula, including C. erecta. In a principal coordinate analysis (PCoA), C. subaphylla was positioned distant not only from C. falcata, C. longibracteata, and C. longifolia, but also from C. erecta. Finally, K = 5 was the best clustering scheme using a Bayesian approach, with five clusters precisely corresponding to the five taxa. Thus, our allozyme results strongly suggest that C. subaphylla merits the rank of species.

Keywords

References

  1. Arduino, P., F. Verra, R. Cianchi, W. Rossi, B. Corrias and L. Bullini. 1996. Genetic variation and natural hybridization between Orchis laxiflora and Orchis palustris (Orchidaceae). Plant Systematics and Evolution 202: 87-109. https://doi.org/10.1007/BF00985819
  2. Brzosko, E. and A. Wroblewska 2013. Genetic diversity of nectar-rewarding Platanthera chlorantha and nectarless Cephalanthera rubra. Botanical Journal of the Linnean Society 171: 751-763. https://doi.org/10.1111/boj.12025
  3. Cheliak, W. M. and J. A. Pitel. 1984. Technique for Starch Gel Electrophoresis of Enzyme from Forest Tree Species. Information Report PI-X-42. Petawawa National Forestry Institute, Chalk River, Ontario, 49 pp.
  4. Chung, M. Y. and M. G. Chung. 2012. A review of the use of genetic markers in orchid systematics with emphasis on allozymes. Biochemical Systematics and Ecology 41: 62-73. https://doi.org/10.1016/j.bse.2011.12.012
  5. Chung, M. Y., N. T. Lu, J. Lopez-Pujol, S. Herrando-Moraira, J. M. Chung, H. Z. Tian, K. Suetsugu, T. Kawahara, T. Yukawa, M. Maki, P. Kumar, Y.-D. Kim and M. G. Chung. 2018. Effect of historical factors on genetic variation in three terrestrial Cephalanthera species (Orchidaceae) with different breeding system on the Korean Peninsula. Nordic Journal of Botany 2018: e01862.
  6. Chung, M. Y., J. D. Nason and M. G. Chung. 2005. Patterns of hybridization and population genetic structure in the terrestrial orchids Liparis kumokiri and Liparis makinoana (Orchidaceae) in sympatric populations. Molecular Ecology 14: 4389-4402. https://doi.org/10.1111/j.1365-294X.2005.02738.x
  7. Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169-1172. https://doi.org/10.1139/f72-172
  8. Crawford, D. J. 1989. Enzyme electrophoresis and plant systematics. In Isozymes in Plant Biology. Soltis, D. E. and P. S. Soltis (eds.), Dioscorides Press, Portland, OR. Pp. 146-164.
  9. Earl, D. A. and B. M. vonHoldt, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  10. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  11. Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  12. Harris, S. A. and R. J. Abbott. 1997. Isozyme analysis of the reported origin of a new hybrid orchid species, Epipactis youngiana (Young's helleborine), in the British Isles. Heredity 79: 402-407. https://doi.org/10.1038/hdy.1997.174
  13. Hedren, M. and S. Nordstrom. 2009. Polymorphic populations of Dactylorhiza incarnata s.l. (Orchidaceae) on the Baltic island of Gotland: morphology, habitat preference and genetic differentiation. Annals of Botany 104: 527-542. https://doi.org/10.1093/aob/mcp102
  14. Hiroe, M. 1971. Orchid Flowers (v. 2). Kyoto-Shoin Co., Kyoto, 116 pp.
  15. Janes, J. K., J. M. Miller, J. R. Dupuis, R. M. Malenfant, J. C. Gorrell, C. I. Cullingham and R. L. Andrew. 2017. The K = 2 conundrum. Molecular Ecology 26: 3594-3602. https://doi.org/10.1111/mec.14187
  16. Jung, S.-Y., S.-H. Park, C.-H. Nam, H.-J. Lee, Y.-M. Lee and K.-S. Chang. 2013. The distribution of vascular plants in Ulleungdo and nearby island regions (Gwaneumdo, Jukdo), Korea. Journal of Asia-Pacific Biodiversity 6: 123-156. https://doi.org/10.7229/jkn.2013.6.1.123
  17. Lee, C. S., S. M. Eum, S. A. Choi and N. S. Lee. 2009. First record of Cephalanthera erecta var. oblanceolata (Orchidaceae) from Korea. Korean Journal of Plant Taxonomy 39: 296-298. https://doi.org/10.11110/kjpt.2009.39.4.296
  18. Lee, N. S. 2011. Illustrated Flora of Korean Orchids. Ewha Womans University Press, Seoul, 345 pp. (in Korean)
  19. Lopez-Pujol, J., N. Garcia-Jacas, A. Susanna and R. Vilatersana. 2012. Should we conserve pure species or hybrid species? Delimiting hybridization and introgression in the Iberian endemic Centaurea podospermifolia. Biological Conservation 152: 271-279. https://doi.org/10.1016/j.biocon.2012.03.032
  20. Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. Journal of Heredity 70: 86-89. https://doi.org/10.1093/oxfordjournals.jhered.a109220
  21. Ministry of Environment, Republic of Korea. 2014. Korean Red List of Threatened Species. 2nd ed. National Institute of Biological Resources, Incheon, 242 pp.
  22. Miyabe, K. and Y. Kudo. 1932. Flora of Hokkaido and Saghalien III: Monocotyledoneae Araceae to Orchidaceae. Journal of the Faculty of Agriculture, Hokkaido Imperial University 26: 279-387.
  23. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. https://doi.org/10.1093/genetics/89.3.583
  24. Ohwi, J. 1953. New names and new combinations adopted in my "Flora of Japan." Bulletin of the National Science Museum (Tokyo, Japan) 33: 66-99.
  25. Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  26. Poulik, M. D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477-1479. https://doi.org/10.1038/1801477a0
  27. Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  28. Pritchard, J. K., X. Wen and D. Falush. 2010. Documentation for structure software: version 2.3. Retrieved 2019 May 2, 2019, available from http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.4/structure_doc.pdf.
  29. Sakamoto, Y., Y. Ogura-Tsujita, K. Ito, K. Suetsugu J. Yokoyama, J. Yamazaki, T. Yukawa and M. Maki. 2016. The tiny-leaved orchid Cephalanthera subaphylla obtains most of its carbon via mycoheterotrophy. Journal of Plant Research 129: 1013-1020. https://doi.org/10.1007/s10265-016-0856-6
  30. Scacchi, R., G. de Angelis and R. M. Corbol. 1991. Effect of the breeding system on the genetic structure in three Cephalanthera spp. (Orchidaceae). Plant Systematics and Evolution 176: 53-61. https://doi.org/10.1007/BF00937945
  31. Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9-27. https://doi.org/10.2307/1546611
  32. Yeh, F. C., R. C. Yang and T. B. J. Boyle. 1999. POPGENE version 1.31: Microsoft Windows-based freeware for population genetic analysis. Quick Users' Guide. University of Alberta, Edmonton.