• 제목/요약/키워드: Bayesian clustering approach

검색결과 18건 처리시간 0.031초

Bayesian Curve Clustering in Microarray

  • 이경은
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 PROCEEDINGS OF JOINT CONFERENCEOF KDISS AND KDAS
    • /
    • pp.39-42
    • /
    • 2006
  • We propose a Bayesian model-based approach using a mixture of Dirichlet processes model with discrete wavelet transform, for curve clustering in the microarray data with time-course gene expressions.

  • PDF

Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정 (Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo)

  • 하정훈;장준현;김준현
    • 산업경영시스템학회지
    • /
    • 제32권3호
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

Curve Clustering in Microarray

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.575-584
    • /
    • 2004
  • We propose a Bayesian model-based approach using a mixture of Dirichlet processes model with discrete wavelet transform, for curve clustering in the microarray data with time-course gene expressions.

  • PDF

퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석 (Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering)

  • 유시호;원홍희;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1591-1601
    • /
    • 2004
  • 유전자를 분석하는 방법 중 하나인 클러스터링은 비슷한 기능을 가진 유전자들을 집단화시켜서 유전자 집단의 기능을 분석하는데 이용되고 있다. 유전자들은 다양한 functional family에 속할 수 있기 때문에 각 유전자의 클러스터를 하나로 결정짓는 기존의 클러스터링 방법보다 퍼지 클러스터링 방법이 유전자 클러스터링에 더 적합하다. 본 논문에서는 피지 클러스터 결과를 효과적으로 검증할 수 있는 베이지안 검증 방법을 제안한다. 베이지안 검증 방법은 확률기반의 방법으로 주어진 데이타에 대해 가장 큰 사후확률을 가진 클러스터 분할을 선택한다. 먼저 본 논문에서 제안하는 베이지안 검증 방법과 기존의 대표적인 4가지 퍼지 클러스터 검증 방법들을 4가지 데이타에 대해 퍼지 c-means알고리즘을 대상으로 비교 평가한다. 그리고 발아효모 세포주기 발현 데이타를 클러스터링한 후, 제안하는 방법으로 그 결과를 검증하여 분석한다.

Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 (Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.243-248
    • /
    • 2015
  • 인식 모델을 구성할 때 정의되지 않은 모델, 인식 모델 구성 후에 추가되어진 모델, 모델이 부족하여 하나의 모델 클러스터링으로 모델링하여 생성된 인식 모델들은 인식률 저하의 원인이 된다. 이러한 원인을 개선하기 위하여 Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 방법을 제안하였다. 제안 방법은 Bayesian 기법의 파라미터 추정을 통하여 탐색된 결과로부터 결정트리 기반 상태 공유 모델링의 최대 확률 기법에 따라 인식모델을 결정한다. 본 논문에서 제안하여 시뮬레이션 데이터를 이용한 실험 결과에서 제안한 군집화 방식을 비교하여 1.29%의 음성인식 오류감소율을 보였으며, 기존 군집화 방식에 비해 개선된 성능을 보였다.

적응적 베이즈 영상분할을 이용한 경계추출 (Boundary Detection using Adaptive Bayesian Approach to Image Segmentation)

  • 김기태;최윤수;김기홍
    • 한국측량학회지
    • /
    • 제22권3호
    • /
    • pp.303-309
    • /
    • 2004
  • 영상의 밝기값과 텍스쳐 모두를 사용하여 대상물의 경계를 보다 정확하게 추출할 수 있는 적응적 베이즈 영상 분할기법을 C 프로그래밍 언어로 개발하였다. 사전확률밀도함수를 추정하기 위하여 깁스 분포 모델을 적용하였고, 조건확률밀도함수를 추정하기 위하여 퍼지 C-군집화 기법을 도입하였다. 추정된 두 확률밀도함수로부터 최대 사후주변확률이 산출되었고, 이를 시뮬레이션영상에 적용하여 99% 이상의 신뢰도를 획득하였다. 또한 개발된 알고리즘을 1963년 미 정찰위성사진을 이용하여 제작한 남극 정사영상에 적용하여 남극 전체 해안선에 대하여 최대 300미터 정확도를 갖는 벡터지도를 제작하였다.

A Bayesian Wavelet Threshold Approach for Image Denoising

  • Ahn, Yun-Kee;Park, Il-Su;Rhee, Sung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.109-115
    • /
    • 2001
  • Wavelet coefficients are known to have decorrelating properties, since wavelet is orthonormal transformation. but empirically, those wavelet coefficients of images, like edges, are not statistically independent. Jansen and Bultheel(1999) developed the empirical Bayes approach to improve the classical threshold algorithm using local characterization in Markov random field. They consider the clustering of significant wavelet coefficients with uniform distribution. In this paper, we developed wavelet thresholding algorithm using Laplacian distribution which is more realistic model.

  • PDF

Temporal 데이터의 최적의 클러스터 수 결정에 관한 연구 (A Study for Determining the Best Number of Clusters on Temporal Data)

  • 조영희;이계성;전진호
    • 한국콘텐츠학회논문지
    • /
    • 제6권1호
    • /
    • pp.23-30
    • /
    • 2006
  • Temporal 데이터의 클러스터링 방법론 중의 하나로 모델기반 방법론이 있다. 이는 각 클러스터에 대하여 오토마타기반의 모델을 가정하는 것이다. 개별 모델을 추출하기 위해서는 먼저 전체 데이터에 대한 적합한 모델을 찾는 것이 필요하다. 전체에 대한 모델은 데이터집합에 대한 최적의 클러스터의 수를 결정함으로 개별 모델 구축의 준비를 완료한다. 본 연구에서는 클러스터 수를 결정하기 위한 기준인 베이지안 정보기준(BIC : Bayesian Information Criterion) 근사법의 활용도를 검증하고 데이터 크기와 BIC 값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안한다. 실험에서는 인위적 모델을 통하여 생성된 인공적인 여러 형태의 데이터집합을 활용하여 BIC근사 측도의 활용성에 대해 살펴보았다. 실험결과에서 보여주는 것처럼 BIC 근사 측도는 데이터의 크기가 비교적 클 경우에 올바른 파티션의 사이즈를 추정함을 확인하였다.

  • PDF

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, Myungkook James
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.40.4-41
    • /
    • 2018
  • The current 'standard model' of cosmology provides a minimal theoretical framework that can explain the gaussian, nearly scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies. However accepting this framework, requires that we include within our cosmic inventory a vacuum energy that is ~122 orders of magnitude lower than Quantum Mechanical predictions, or alternatively a new scalar field (dark energy) that has negative pressure. An alternative approach to adding extra components to the Universe would be to modify the equations of Gravity. Although GR is supported by many current observations there are still alternative models that can be considered. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this talk we present our methodology and preliminary results that show f(R) gravity is mildly disfavoured by the data.

  • PDF