DOI QR코드

DOI QR Code

Quantitation and Radical Scavenging Activity Evaluation of Iridoids and Phenylethanoids from the Roots of Phlomis umbrosa (Turcz.) using DPPH Free Radical and DPPH-HPLC Methods, and their Cytotoxicity

  • Le, Duc Dat (Drug Research and Development Center, College of Pharmacy, Catholic University of Daegu) ;
  • Nguyen, Duc Hung (Drug Research and Development Center, College of Pharmacy, Catholic University of Daegu) ;
  • Zhao, Bing Tian (Drug Research and Development Center, College of Pharmacy, Catholic University of Daegu) ;
  • Min, Byung Sun (Drug Research and Development Center, College of Pharmacy, Catholic University of Daegu) ;
  • Song, Si Whan (ChemOn Inc., Gyeonggi Bio-Research Center) ;
  • Woo, Mi Hee (Drug Research and Development Center, College of Pharmacy, Catholic University of Daegu)
  • Received : 2019.02.25
  • Accepted : 2019.04.17
  • Published : 2019.06.30

Abstract

The roots of Phlomis umbrosa (Turcz.) (Phlomidis Radix) have been traditionally used to treat cold, reduce swelling and staunch bleeding. Four iridoids (1 - 3 and 5) and six phenylethanoid derivatives (4, and 6 - 10) were isolated from the roots of P. umbrosa. A simple, sensitive, and reliable analytical HPLC/PDA method was developed, validated, and applied to determine 10 marker compounds in Phlomidis Radix. Furthermore, the isolates were evaluated for cytotoxic and anti-oxidant activities as well as DPPH-HPLC method. Among them, compounds 4 and 6 - 9 displayed potent anti-oxidant capacities using DPPH assay with $IC_{50}$ values of $27.7{\pm}2.4$, $10.2{\pm}1.1$, $18.0{\pm}0.8$, $19.1{\pm}0.3$, and $19.9{\pm}0.6{\mu}M$, and compounds 6, 8, and 9 displayed significant cytotoxic activity against HL-60 with $IC_{50}$ values of $35.4{\pm}3.1$, $18.6{\pm}2.0$, and $42.9{\pm}3.0{\mu}M$, respectively.

Keywords

References

  1. Andary, C.; Wylde, R.; Laffite, C.; Privat, G.; Winternitz, F. Phytochemistry 1982, 21, 1123-1127. https://doi.org/10.1016/S0031-9422(00)82429-2
  2. Zhang, Y.; Wang, Z. Z. J. Pharm. Biomed. Anal. 2008, 47, 213-217. https://doi.org/10.1016/j.jpba.2007.12.027
  3. Liu, P.; Takaishi, T.; Duan, H. Q. Chin. Chem. Lett. 2007, 18, 155-157. https://doi.org/10.1016/j.cclet.2006.12.019
  4. Limem-Ben Amor, I.; Boubaker, J.; Ben Sgaier, M.; Skandrani, I.; Bhouri, W.; Neffati, A.; Kilani, S.; Bouhlel, I.; Ghedira, K.; Chekir-Ghedira, L. J. Ethnopharmacol. 2009, 125, 183-202. https://doi.org/10.1016/j.jep.2009.06.022
  5. Zhang, Y.; Wang, Z. Z. C. R. Biol. 2009, 332, 816-826. https://doi.org/10.1016/j.crvi.2009.05.006
  6. Yun, J. S.; Kim, J.; Choi, J.; Kwon, K.; Jo, C. H. Korean J. Food Sci. Technol. 2016, 48, 531-535. https://doi.org/10.9721/KJFST.2016.48.6.531
  7. Ministry of Food and Drug Safety. The Korean herbal pharmacopoeia; Shinil Books: Korea, 2013, pp 250-251.
  8. Ministry of Food and Drug Safety. The Korean herbal pharmacopoeia; Shinil Books: Korea, 2013, pp 430-431.
  9. Fang, L.; Zhang, H.; Zhou, J.; Geng, Y.; Wang, X. J. Anal. Methods Chem. 2018, 2018, 3158293-3158299.
  10. Angius, F.; Floris, A. Toxicol. In Vitro. 2015, 29, 314-319. https://doi.org/10.1016/j.tiv.2014.11.009
  11. Kobayashi, S.; Mima, A.; Kihara, M.; Imakura, Y. Chem. Pharm. Bull. 1986, 34, 876-880. https://doi.org/10.1248/cpb.34.876
  12. Kasai, R.; Katagiri, M.; Ohtani, K.; Yamasaki, K.; Yang, C. R.; Tanaka, O. Phytochemistry 1994, 36, 967-970. https://doi.org/10.1016/S0031-9422(00)90473-4
  13. Clifford, M. N.; Johnston, K. L.; Knight, S.; Kuhnert, N. J. Agric. Food Chem. 2003, 51, 2900-2911. https://doi.org/10.1021/jf026187q
  14. Saracoglu, I.; Kojima, K.; Harput, U. S.; Ogihara, Y. Chem. Pharm. Bull. 1998, 46, 726-727. https://doi.org/10.1248/cpb.46.726
  15. Suo, M.; Ohta, T.; Takano, F.; Jin, S. Molecules 2013, 18, 7336-7345. https://doi.org/10.3390/molecules18077336
  16. Li, L.; Tsao, R.; Liu, Z.; Liu, S.; Yang, R.; Young, J. C.; Zhu, H.; Deng, Z.; Xie, M.; Fu, Z. J. Chromatogr. A 2005, 1063, 161-169. https://doi.org/10.1016/j.chroma.2004.11.024

Cited by

  1. Development and Validation of HPLC-PDA Method and Pattern Recognition Analyses Using Eight Marker Compounds for the Quality Control Between the Seeds of Cuscuta chinensis Lam. and Cuscuta japonica Cho vol.25, pp.4, 2019, https://doi.org/10.20307/nps.2019.25.4.334
  2. In Vitro Antioxidant Activities and the Therapeutic Potential of Some Newly Synthesized Chalcones Against 4-Acetaminophenol Induced Hepatotoxicity in Rats vol.19, pp.1, 2019, https://doi.org/10.1177/1559325821996955