Figure 1. Summary of the data reduction process performed by teams at the Korea Astronomy and Space Science Institute (KASI) and Seoul National University (SNU). Photometry was conducted with publicly available open-source packages indicated at the bottom left (the shadowed box), which includes astroquery (Ginsburg et al. 2018), astroscrappy, ccdproc (Craig et al. 2017), reproject (Robitaille 2018), and photutils (Bradley et al. 2017), in addition to the astropy core package (Astropy Collaboration et al. 2013, 2018).
Figure 2. Reduced magnitude, HV(α), and phase-corrected magnitude, HV, as function of time. The numbers above each marker indicate the phase angles α at the observation epoch. The red solid line is the best-fit geometrical crosssectional area, −2:5 log10(Sproj(t)) (See Equation 5), the faint black dotted lines indicate model curves within the 1-σ confidence interval (See Appendix A). The short-time (~1−2 days) bumpy features in the data are reproduced in the model, meaning that these features are attributed to the rotation of the asteroid.
Figure 3. Top: The radiance factor (I/F) as a function of phase angle (α). The observed radiance factor values (blue cross markers) are tted using a single power-law: I/F(α) = pV × 10bα. The best fit pV, f1, and f2 (see Equation 9) and their 1-σ uncertainties are shown above the figure. The red solid line is the best-fit model, the shaded area marks the 1- condence interval of the model fit. The black marker shows A5 = I/F(α = 5°) and its 1-σ confidence interval, indicated by the numbers next to the marker. Bottom: The corresponding
Figure 4. Albedo at α = 5° vs. Pmax plot for lunar and terrestrial samples in Geake & Dollfus (1986) along with those of three asteroids whose Pmax values are well studied. The data for (3200) Phaethon and (1566) Icarus are from Ishiguro et al. (2017) and Ito et al. (2018), respectively. The word "Terr" in the legend means "terrestrial" materials. The numbers near the three asteroidal objects denote the perihelion distances of each asteroids in au.
Table 1 Symbols frequently used in this paper
Table 2 Summary of our observations
Table 3 Parameter values derived using either all observational data or after excluding the data of 2018-04-07 CTIO (α = 2:79°)
Table 4 Geometric albedo (pV) values obtained from polarimetry
References
- Astropy Collaboration: Price-Whelan, A. M., Sipocz, B. M., et al. 2018, The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, AJ, 156, 123 https://doi.org/10.3847/1538-3881/aabc4f
- Astropy Collaboration: Robitaille, T. P., Tollerud, E. J., et al. 2013, Astropy: A community Python Package for Astronomy, A&A, 558, A33 https://doi.org/10.1051/0004-6361/201322068
- Belskaya, I. N., & Shevchenko, V. G. 2000, Opposition Effect of Asteroids, Icarus, 147, 94 https://doi.org/10.1006/icar.2000.6410
- Bowell, E., Hapke, B., Domingue, D., et al. 1989, Application of Photometric Models to Asteroids, in Asteroids II, ed. Binzel, R. P., Gehrels, T., & Matthews, M. S., 524
- Bradley, L., Sipocz, B., Robitaille, T., et al. 2017, astropy/photutils: v0.4
- Bus, S. J., & Binzel, R. P. 2002, Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A Feature-Based Taxonomy, Icarus, 158, 146 https://doi.org/10.1006/icar.2002.6856
- Cellino, A., Bagnulo, S., Gil-Hutton, R., et al. 2015, On the Calibration of the Relation between Geometric Albedo and Polarimetric Properties for the Asteroids, MNRAS, 451, 3473 https://doi.org/10.1093/mnras/stv1188
- Craig, M., Crawford, S., Seifert, M., et al. 2017, astropy/ccdproc: v1.3.0.post1
- DeMeo, F. E., Binzel, R. P., Slivan, S. M., et al. 2009, An Extension of the Bus Asteroid Taxonomy into the Near-Infrared, Icarus, 202, 160. https://doi.org/10.1016/j.icarus.2009.02.005
- Dollfus, A. 1998, Lunar Surface Imaging Polarimetry: I. Roughness and Grain Size, Icarus, 136, 69 https://doi.org/10.1006/icar.1998.6008
- Dollfus, A. & Bowell, E. 1971 Polarimetric Properties of the Lunar Surface and its Interpretation Part I. Telescopic Observations, A&A, 10, 29.
- Dollfus, A., & Zellner, B. 1979, Optical Polarimetry of Asteroids and Laboratory Samples, ed. T. Gehrels & M. S. Matthews, 170
- Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016, The Pan-STARRS1 Database and Data Products, arXiv:1612.05243
- Geake, J. E., & Dollfus, A. 1986, Planetary Surface Texture and Albedo from Parameter Plots of Optical Polarization Data, MNRAS, 218, 75 https://doi.org/10.1093/mnras/218.1.75
- Ginsburg, A., Sipocz, B., Parikh, M., et al. 2018, astropy/astroquery: v0.3.8 release
- Harris, A. W. 1998, A Thermal Model for Near-Earth Asteroids, Icarus, 131, 291 https://doi.org/10.1006/icar.1997.5865
- Howell, E. S., Britt, D. T., Bell, J. F., et al. 1994, Visible and Near-infrared Spectral Observations of 4179 Toutatis, Icarus, 111, 468 https://doi.org/10.1006/icar.1994.1157
- Hu, S., Ji, J., Richardson, D. C., et al. 2018, The Formation Mechanism of 4179 Toutatis' Elongated Bilobed Structure in a Close Earth Encounter Scenario, MNRAS, 478, 501 https://doi.org/10.1093/mnras/sty1073
- Huang, J., Ji, J., Ye, P., et al. 2013, The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2, Sci. Rep., 3, 3411 https://doi.org/10.1038/srep03411
- Hudson, R. S. & Ostro, S. J. 1995, Shape and Non-Principal Axis Spin State of Asteroid 4179 Toutatis, Science, 270, 84 https://doi.org/10.1126/science.270.5233.84
- Hudson, R. S., Ostro, S. J., & Scheeres, D. J. 2003, Highresolution Model of Asteroid 4179 Toutatis, Icarus, 161, 346 https://doi.org/10.1016/S0019-1035(02)00042-8
- Hudson, R. S., Ostro, S. J., & Scheeres, D. J. 2004, Asteroid Radar Shape Models, 4179 Toutatis, HIRES, NASA Planetary Data System, 16, EAR
- Ishiguro, M., Kuroda, D., Watanabe, M., et al. 2017, Polarimetric Study of Near-Earth Asteroid (1566) Icarus, AJ, 154, 180 https://doi.org/10.3847/1538-3881/aa8b1a
- Ishiguro, M., Nakayama, H., Kogachi, M., et al. 1997, Maximum Visible Polarization of 4179 Toutatis in the Apparition of 1996, PASJ, 49, L31 https://doi.org/10.1093/pasj/49.5.L31
- Ito, T., Ishiguro, M., Arai, T., et al. 2018, Extremely Strong Polarization of an Active Asteroid (3200) Phaethon, Nat. Comm., 9, 2486 https://doi.org/10.1038/s41467-018-04727-2
- Ji, J., Jiang, Y., Zhao, Y., et al. 2016, Chang'e-2 Spacecraft Observations of Asteroid 4179 Toutatis, IAUS, 318, 144
- Jiang, Y., Ji, J., Huang, J., et al. 2015, Boulders on Asteroid Toutatis as Observed by Chang'e-2, NatSR, 5, 16029
- Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
- Lazzarin, M., Barbieri, C., & Marzari, F. 1994, CCD Reflectance Spectra of Apollo Asteroid 4179 Toutatis, Planet. Space Sci., 42, 327 https://doi.org/10.1016/0032-0633(94)90105-8
- Lee, M. & Ishiguro, M. 2018, Opposition Effect on S-type Asteroid (25143) Itokawa, A&A, 616, A178 https://doi.org/10.1051/0004-6361/201832721
- Lupishko, D. F. 2018, Generalized Calibration of the Polarimetric Albedo Scale of Asteroids, Sol. Syst. Res., 52, 98 https://doi.org/10.1134/S0038094618010069
- Lupishko, D. F., Vasilyev, S. V., Efimov, J. S., et al. 1995, UBVRI-polarimetry of Asteroid 4179 Toutatis, Icarus, 113, 200 https://doi.org/10.1006/icar.1995.1016
- Mainzer, A., Bauer, J., Grav, T., et al. 2011, Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science, ApJ, 731, 53 https://doi.org/10.1088/0004-637X/731/1/53
- Mann, A. W., & von Braun, K. 2015, Revised Filter Profiles and Zero Points for Broadband Photometry, PASP, 127, 102 https://doi.org/10.1086/680012
- Markov, A., & Barabashev, N. P. 1926, On the Reflection of Light from the Lunar Surface, Astron. Zh., 3, 55.
- Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2012, A Revised Asteroid Polarization-Albedo Relationship Using WISE/NEOWISE Data, ApJ, 749, 104 https://doi.org/10.1088/0004-637X/749/2/104
- Masiero, J. R., Nugent, C., Mainzer, A. K., et al. 2017, NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos, AJ, 154, 168 https://doi.org/10.3847/1538-3881/aa89ec
- Moon, H.-K., Kim, M.-J., Yim, H.-S., et al. 2016, in IAU Symposium, Vol. 318, Asteroids: New Observations, New Models, ed. Chesley, S. R., Morbidelli, A., Jedicke, R., & Farnocchia, D., 306-310
- Mueller, B. E. A., Samarasinha, N. H., & Belton, M. J. S. 2002, The Diagnosis of Complex Rotation in the Lightcurve of 4179 Toutatis and Potential Applications to Other Asteroids and Bare Cometary Nuclei, Icarus, 158, 305 https://doi.org/10.1006/icar.2002.6892
- Mukai, T., Iwata, T., Kikuchi, S., et al. 1997, Polarimetric Observations of 4179 Toutatis in 1992/1993, Icarus, 127, 452 https://doi.org/10.1006/icar.1997.5700
- Myhrvold, N. 2016, Comparing NEO Search Telescopes, PASP, 128, 045004. https://doi.org/10.1088/1538-3873/128/962/045004
- Myhrvold, N. 2018, An Empirical Examination of WISE/NEOWISE Asteroid Analysis and Results, Icarus, 314, 64 https://doi.org/10.1016/j.icarus.2018.05.004
- Myhrvold, N. 2018, Asteroid Thermal Modeling in the Presence of Reflected Sunlight, Icarus, 303, 91 https://doi.org/10.1016/j.icarus.2017.12.024
- Myhrvold, N. P. 2018, Response to Wright et al. 2018: Even More Serious Problems with NEOWISE, arXiv:1812.06516
- Nakamura, T., & Fuse, T. 1998, Asteroid Lightcurve Observations near Stationary Points: (4179) Toutatis in 1997 February, PASJ, 50, 531 https://doi.org/10.1093/pasj/50.5.531
- Ostro, S. J. 1993, Planetary Radar Astronomy, Rev. Mod. Phys., 65, 1235 https://doi.org/10.1103/RevModPhys.65.1235
- Ostro, S. J., Hudson, R. S., Jurgens, R. F., et al. 1995, Radar Images of Asteroid 4179 Toutatis, Science, 270, 80 https://doi.org/10.1126/science.270.5233.80
- Pravec, P. & Harris, A. W. 2007, Binary Asteroid Population. 1. Angular Momentum Content, Icarus, 190, 250 https://doi.org/10.1016/j.icarus.2007.02.023
- Reddy, V., Sanchez, J. A., Gaffey, M. J., et al. 2012, Composition of Near-Earth Asteroid (4179) Toutatis, Icarus, 221, 1177 https://doi.org/10.1016/j.icarus.2012.10.005
- Robitaille, T. 2018, reproject: Astronomical Image Reprojection in Python
- Rozitis, B., & Green, S. F. 2011, Directional Characteristics of Thermal-infrared Beaming from Atmosphereless Planetary Surfaces - a New Thermophysical Model, MNRAS, 415, 2042 https://doi.org/10.1111/j.1365-2966.2011.18718.x
- Russell, H. N. 1916, On the Albedo of the Planets and Their Satellites, ApJ, 43, 173 https://doi.org/10.1086/142244
- Scheeres, D. J., Ostro, S. J., Hudson, R. S., et al. 1998, Dynamics of Orbits Close to Asteroid 4179 Toutatis, Icarus, 132, 53 https://doi.org/10.1006/icar.1997.5870
- Shevchenko, V. G., & Tedesco, E. F. 2006, Asteroid Albedos Deduced from Stellar Occultations, Icarus, 184, 211 https://doi.org/10.1016/j.icarus.2006.04.006
- Shkuratov, I. G., & Opanasenko, N. V. 1992, Polarimetric and Photometric Properties of the Moon: Telescope Observation and Laboratory Simulation. II - The Positive Polarization, Icarus, 99, 468 https://doi.org/10.1016/0019-1035(92)90161-Y
- Spencer, J. R., Akimov, L. A., Angeli, C., et al. 1995, The Lightcurve of 4179 Toutatis: Evidence for Complex Rotation., Icarus, 117, 71 https://doi.org/10.1006/icar.1995.1143
- Stetson, P. B. 1987, DAOPHOT - A Computer Program for Crowded-field Stellar Photometry, PASP, 99, 191 https://doi.org/10.1086/131977
- Takahashi, Y., Busch, M. W., & Scheeres, D. J. 2013, Spin State and Moment of Inertia Characterization of 4179 Toutatis, AJ, 146, 95 https://doi.org/10.1088/0004-6256/146/4/95
- Tatsumi, E., Domingue, D., Hirata, N., et al. 2018, Vis-NIR Disk-integrated Photometry of Asteroid 25143 Itokawa around Opposition by AMICA/Hayabusa, Icarus, 311, 175 https://doi.org/10.1016/j.icarus.2018.04.001
- Tedesco, E. F., Noah, P. V., Noah, M., et al. 2002, The Supplemental IRAS Minor Planet Survey, AJ, 123, 1056 https://doi.org/10.1086/338320
- Usui, F., Hasegawa, S., Ishiguro, M., et al. 2014, A Comparative Study of Infrared Asteroid Surveys: IRAS, AKARI, and WISE, PASJ, 66, 56 https://doi.org/10.1093/pasj/psu037
- Usui, F., Kuroda, D., Muller, T. G., et al. 2011, Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey, PASJ, 63, 1117 https://doi.org/10.1093/pasj/63.5.1117
- van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420 https://doi.org/10.1086/323894
- Whipple, A. L. & Shelus, P. J. 1993, Long-term Dynamical Evolution of the Minor Planet (4179) Toutatis, Icarus, 105, 408 https://doi.org/10.1006/icar.1993.1137
- Widorn, T. 1967, Zur photometrischen Bestimmung der Durchmesser der Kleinen Planeten, Annalen der Universit ats-Sternwarte Wien, 27, 109
- Wright, E., Mainzer, A., Masiero, J., et al. 2018, Response to \An Empirical Examination of WISE/NEOWISE Asteroid Analysis and Results", arXiv:1811.01454
- Yu, L. L., Ji, J., & Wang, S. 2014, Shape, Thermal and Surface Properties Determination of a Candidate Spacecraft Target Asteroid (175706) 1996 FG3, MNRAS, 439, 3357 https://doi.org/10.1093/mnras/stu164
- Yu, L. L., & Ji, J. 2015, Surface Thermophysical Properties Determination of OSIRIS-REx Target Asteroid (101955) Bennu, MNRAS, 452, 368 https://doi.org/10.1093/mnras/stv1270
- Zellner, B., Leake, M., Lebertre, T., et al. 1977, Lunar and Planetary Science Conference Proceedings, 8, Lunar and Planetary Science Conference Proceedings, ed. Merril, R. B., 1091
- Zhao, Y., Ji, J., Huang, J., et al., 2015, Orientation and Rotational Parameters of Asteroid 4179 Toutatis: New Insights from Chang'e-2's Close Flyby, MNRAS, 450, 3620 https://doi.org/10.1093/mnras/stv792
- Zhao, D.-F., Liu, P., Zhao, W., et al., 2016, Reflectance of Asteroid 4179 Toutatis Based on Its Space Optical Image, AcASn, 40, 555