DOI QR코드

DOI QR Code

THE GEOMETRIC ALBEDO OF (4179) TOUTATIS ESTIMATED FROM KMTNET DEEP-SOUTH OBSERVATIONS

  • Bach, Yoonsoo P. (Department of Physics and Astronomy, Seoul National University) ;
  • Ishiguro, Masateru (Department of Physics and Astronomy, Seoul National University) ;
  • Jin, Sunho (Department of Physics and Astronomy, Seoul National University) ;
  • Yang, Hongu (Korea Astronomy and Space Science Institute) ;
  • Moon, Hong-Kyu (Korea Astronomy and Space Science Institute) ;
  • Choi, Young-Jun (Korea Astronomy and Space Science Institute) ;
  • JeongAhn, Youngmin (Korea Astronomy and Space Science Institute) ;
  • Kim, Myung-Jin (Korea Astronomy and Space Science Institute) ;
  • Kwak, SungWon (Korea Astronomy and Space Science Institute)
  • Received : 2019.01.25
  • Accepted : 2019.05.21
  • Published : 2019.06.30

Abstract

We derive the geometric albedo of a near-Earth asteroid, (4179) Toutatis, to investigate its surface physical conditions. The asteroid has been studied rigorously not only via ground-based photometric, spectrometric, polarimetric, and radar observations but also via in situ observation by the Chinese Chang'e-2 space probe; however, its geometric albedo is not well understood. We conducted V-band photometric observations when the asteroid was at opposition in April 2018 using the three telescopes in the southern hemisphere that compose the Korea Microlensing Telescope Network (KMTNet). The observed time-variable cross section was corrected using the radar shape model. We find that Toutatis has a geometric albedo $p_V=0.185^{+0.045}_{-0.039}$, which is typical of S-type asteroids. We compare the geometric albedo with archival polarimetric data and further find that the polarimetric slope-albedo law provides a reliable estimate for the albedo of this S-type asteroid. The thermal infrared observation also produced similar results if the size of the asteroid is updated to match the results from Chang'e-2. We conjecture that the surface of Toutatis is covered with grains smaller than that of the near-Sun asteroids including (1566) Icarus and (3200) Phaethon.

Keywords

CMHHBA_2019_v52n3_71_f0001.png 이미지

Figure 1. Summary of the data reduction process performed by teams at the Korea Astronomy and Space Science Institute (KASI) and Seoul National University (SNU). Photometry was conducted with publicly available open-source packages indicated at the bottom left (the shadowed box), which includes astroquery (Ginsburg et al. 2018), astroscrappy, ccdproc (Craig et al. 2017), reproject (Robitaille 2018), and photutils (Bradley et al. 2017), in addition to the astropy core package (Astropy Collaboration et al. 2013, 2018).

CMHHBA_2019_v52n3_71_f0002.png 이미지

Figure 2. Reduced magnitude, HV(α), and phase-corrected magnitude, HV, as function of time. The numbers above each marker indicate the phase angles α at the observation epoch. The red solid line is the best-fit geometrical crosssectional area, −2:5 log10(Sproj(t)) (See Equation 5), the faint black dotted lines indicate model curves within the 1-σ confidence interval (See Appendix A). The short-time (~1−2 days) bumpy features in the data are reproduced in the model, meaning that these features are attributed to the rotation of the asteroid.

CMHHBA_2019_v52n3_71_f0003.png 이미지

Figure 3. Top: The radiance factor (I/F) as a function of phase angle (α). The observed radiance factor values (blue cross markers) are tted using a single power-law: I/F(α) = pV × 10. The best fit pV, f1, and f2 (see Equation 9) and their 1-σ uncertainties are shown above the figure. The red solid line is the best-fit model, the shaded area marks the 1- con dence interval of the model fit. The black marker shows A5 = I/F(α = 5°) and its 1-σ confidence interval, indicated by the numbers next to the marker. Bottom: The corresponding $X^{2}_{red}$ statistic in the parameter space. The 1-σ confidence contour of $X^{2}_{red}$ and that of pV are shown. The colormap is in log-scale and contours for a few selected of$X^{2}_{red}$ values are shown to guide the eyes.

CMHHBA_2019_v52n3_71_f0004.png 이미지

Figure 4. Albedo at α = 5° vs. Pmax plot for lunar and terrestrial samples in Geake & Dollfus (1986) along with those of three asteroids whose Pmax values are well studied. The data for (3200) Phaethon and (1566) Icarus are from Ishiguro et al. (2017) and Ito et al. (2018), respectively. The word "Terr" in the legend means "terrestrial" materials. The numbers near the three asteroidal objects denote the perihelion distances of each asteroids in au.

Table 1 Symbols frequently used in this paper

CMHHBA_2019_v52n3_71_t0001.png 이미지

Table 2 Summary of our observations

CMHHBA_2019_v52n3_71_t0002.png 이미지

Table 3 Parameter values derived using either all observational data or after excluding the data of 2018-04-07 CTIO (α = 2:79°)

CMHHBA_2019_v52n3_71_t0003.png 이미지

Table 4 Geometric albedo (pV) values obtained from polarimetry

CMHHBA_2019_v52n3_71_t0004.png 이미지

References

  1. Astropy Collaboration: Price-Whelan, A. M., Sipocz, B. M., et al. 2018, The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, AJ, 156, 123 https://doi.org/10.3847/1538-3881/aabc4f
  2. Astropy Collaboration: Robitaille, T. P., Tollerud, E. J., et al. 2013, Astropy: A community Python Package for Astronomy, A&A, 558, A33 https://doi.org/10.1051/0004-6361/201322068
  3. Belskaya, I. N., & Shevchenko, V. G. 2000, Opposition Effect of Asteroids, Icarus, 147, 94 https://doi.org/10.1006/icar.2000.6410
  4. Bowell, E., Hapke, B., Domingue, D., et al. 1989, Application of Photometric Models to Asteroids, in Asteroids II, ed. Binzel, R. P., Gehrels, T., & Matthews, M. S., 524
  5. Bradley, L., Sipocz, B., Robitaille, T., et al. 2017, astropy/photutils: v0.4
  6. Bus, S. J., & Binzel, R. P. 2002, Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A Feature-Based Taxonomy, Icarus, 158, 146 https://doi.org/10.1006/icar.2002.6856
  7. Cellino, A., Bagnulo, S., Gil-Hutton, R., et al. 2015, On the Calibration of the Relation between Geometric Albedo and Polarimetric Properties for the Asteroids, MNRAS, 451, 3473 https://doi.org/10.1093/mnras/stv1188
  8. Craig, M., Crawford, S., Seifert, M., et al. 2017, astropy/ccdproc: v1.3.0.post1
  9. DeMeo, F. E., Binzel, R. P., Slivan, S. M., et al. 2009, An Extension of the Bus Asteroid Taxonomy into the Near-Infrared, Icarus, 202, 160. https://doi.org/10.1016/j.icarus.2009.02.005
  10. Dollfus, A. 1998, Lunar Surface Imaging Polarimetry: I. Roughness and Grain Size, Icarus, 136, 69 https://doi.org/10.1006/icar.1998.6008
  11. Dollfus, A. & Bowell, E. 1971 Polarimetric Properties of the Lunar Surface and its Interpretation Part I. Telescopic Observations, A&A, 10, 29.
  12. Dollfus, A., & Zellner, B. 1979, Optical Polarimetry of Asteroids and Laboratory Samples, ed. T. Gehrels & M. S. Matthews, 170
  13. Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2016, The Pan-STARRS1 Database and Data Products, arXiv:1612.05243
  14. Geake, J. E., & Dollfus, A. 1986, Planetary Surface Texture and Albedo from Parameter Plots of Optical Polarization Data, MNRAS, 218, 75 https://doi.org/10.1093/mnras/218.1.75
  15. Ginsburg, A., Sipocz, B., Parikh, M., et al. 2018, astropy/astroquery: v0.3.8 release
  16. Harris, A. W. 1998, A Thermal Model for Near-Earth Asteroids, Icarus, 131, 291 https://doi.org/10.1006/icar.1997.5865
  17. Howell, E. S., Britt, D. T., Bell, J. F., et al. 1994, Visible and Near-infrared Spectral Observations of 4179 Toutatis, Icarus, 111, 468 https://doi.org/10.1006/icar.1994.1157
  18. Hu, S., Ji, J., Richardson, D. C., et al. 2018, The Formation Mechanism of 4179 Toutatis' Elongated Bilobed Structure in a Close Earth Encounter Scenario, MNRAS, 478, 501 https://doi.org/10.1093/mnras/sty1073
  19. Huang, J., Ji, J., Ye, P., et al. 2013, The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2, Sci. Rep., 3, 3411 https://doi.org/10.1038/srep03411
  20. Hudson, R. S. & Ostro, S. J. 1995, Shape and Non-Principal Axis Spin State of Asteroid 4179 Toutatis, Science, 270, 84 https://doi.org/10.1126/science.270.5233.84
  21. Hudson, R. S., Ostro, S. J., & Scheeres, D. J. 2003, Highresolution Model of Asteroid 4179 Toutatis, Icarus, 161, 346 https://doi.org/10.1016/S0019-1035(02)00042-8
  22. Hudson, R. S., Ostro, S. J., & Scheeres, D. J. 2004, Asteroid Radar Shape Models, 4179 Toutatis, HIRES, NASA Planetary Data System, 16, EAR
  23. Ishiguro, M., Kuroda, D., Watanabe, M., et al. 2017, Polarimetric Study of Near-Earth Asteroid (1566) Icarus, AJ, 154, 180 https://doi.org/10.3847/1538-3881/aa8b1a
  24. Ishiguro, M., Nakayama, H., Kogachi, M., et al. 1997, Maximum Visible Polarization of 4179 Toutatis in the Apparition of 1996, PASJ, 49, L31 https://doi.org/10.1093/pasj/49.5.L31
  25. Ito, T., Ishiguro, M., Arai, T., et al. 2018, Extremely Strong Polarization of an Active Asteroid (3200) Phaethon, Nat. Comm., 9, 2486 https://doi.org/10.1038/s41467-018-04727-2
  26. Ji, J., Jiang, Y., Zhao, Y., et al. 2016, Chang'e-2 Spacecraft Observations of Asteroid 4179 Toutatis, IAUS, 318, 144
  27. Jiang, Y., Ji, J., Huang, J., et al. 2015, Boulders on Asteroid Toutatis as Observed by Chang'e-2, NatSR, 5, 16029
  28. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  29. Lazzarin, M., Barbieri, C., & Marzari, F. 1994, CCD Reflectance Spectra of Apollo Asteroid 4179 Toutatis, Planet. Space Sci., 42, 327 https://doi.org/10.1016/0032-0633(94)90105-8
  30. Lee, M. & Ishiguro, M. 2018, Opposition Effect on S-type Asteroid (25143) Itokawa, A&A, 616, A178 https://doi.org/10.1051/0004-6361/201832721
  31. Lupishko, D. F. 2018, Generalized Calibration of the Polarimetric Albedo Scale of Asteroids, Sol. Syst. Res., 52, 98 https://doi.org/10.1134/S0038094618010069
  32. Lupishko, D. F., Vasilyev, S. V., Efimov, J. S., et al. 1995, UBVRI-polarimetry of Asteroid 4179 Toutatis, Icarus, 113, 200 https://doi.org/10.1006/icar.1995.1016
  33. Mainzer, A., Bauer, J., Grav, T., et al. 2011, Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science, ApJ, 731, 53 https://doi.org/10.1088/0004-637X/731/1/53
  34. Mann, A. W., & von Braun, K. 2015, Revised Filter Profiles and Zero Points for Broadband Photometry, PASP, 127, 102 https://doi.org/10.1086/680012
  35. Markov, A., & Barabashev, N. P. 1926, On the Reflection of Light from the Lunar Surface, Astron. Zh., 3, 55.
  36. Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2012, A Revised Asteroid Polarization-Albedo Relationship Using WISE/NEOWISE Data, ApJ, 749, 104 https://doi.org/10.1088/0004-637X/749/2/104
  37. Masiero, J. R., Nugent, C., Mainzer, A. K., et al. 2017, NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos, AJ, 154, 168 https://doi.org/10.3847/1538-3881/aa89ec
  38. Moon, H.-K., Kim, M.-J., Yim, H.-S., et al. 2016, in IAU Symposium, Vol. 318, Asteroids: New Observations, New Models, ed. Chesley, S. R., Morbidelli, A., Jedicke, R., & Farnocchia, D., 306-310
  39. Mueller, B. E. A., Samarasinha, N. H., & Belton, M. J. S. 2002, The Diagnosis of Complex Rotation in the Lightcurve of 4179 Toutatis and Potential Applications to Other Asteroids and Bare Cometary Nuclei, Icarus, 158, 305 https://doi.org/10.1006/icar.2002.6892
  40. Mukai, T., Iwata, T., Kikuchi, S., et al. 1997, Polarimetric Observations of 4179 Toutatis in 1992/1993, Icarus, 127, 452 https://doi.org/10.1006/icar.1997.5700
  41. Myhrvold, N. 2016, Comparing NEO Search Telescopes, PASP, 128, 045004. https://doi.org/10.1088/1538-3873/128/962/045004
  42. Myhrvold, N. 2018, An Empirical Examination of WISE/NEOWISE Asteroid Analysis and Results, Icarus, 314, 64 https://doi.org/10.1016/j.icarus.2018.05.004
  43. Myhrvold, N. 2018, Asteroid Thermal Modeling in the Presence of Reflected Sunlight, Icarus, 303, 91 https://doi.org/10.1016/j.icarus.2017.12.024
  44. Myhrvold, N. P. 2018, Response to Wright et al. 2018: Even More Serious Problems with NEOWISE, arXiv:1812.06516
  45. Nakamura, T., & Fuse, T. 1998, Asteroid Lightcurve Observations near Stationary Points: (4179) Toutatis in 1997 February, PASJ, 50, 531 https://doi.org/10.1093/pasj/50.5.531
  46. Ostro, S. J. 1993, Planetary Radar Astronomy, Rev. Mod. Phys., 65, 1235 https://doi.org/10.1103/RevModPhys.65.1235
  47. Ostro, S. J., Hudson, R. S., Jurgens, R. F., et al. 1995, Radar Images of Asteroid 4179 Toutatis, Science, 270, 80 https://doi.org/10.1126/science.270.5233.80
  48. Pravec, P. & Harris, A. W. 2007, Binary Asteroid Population. 1. Angular Momentum Content, Icarus, 190, 250 https://doi.org/10.1016/j.icarus.2007.02.023
  49. Reddy, V., Sanchez, J. A., Gaffey, M. J., et al. 2012, Composition of Near-Earth Asteroid (4179) Toutatis, Icarus, 221, 1177 https://doi.org/10.1016/j.icarus.2012.10.005
  50. Robitaille, T. 2018, reproject: Astronomical Image Reprojection in Python
  51. Rozitis, B., & Green, S. F. 2011, Directional Characteristics of Thermal-infrared Beaming from Atmosphereless Planetary Surfaces - a New Thermophysical Model, MNRAS, 415, 2042 https://doi.org/10.1111/j.1365-2966.2011.18718.x
  52. Russell, H. N. 1916, On the Albedo of the Planets and Their Satellites, ApJ, 43, 173 https://doi.org/10.1086/142244
  53. Scheeres, D. J., Ostro, S. J., Hudson, R. S., et al. 1998, Dynamics of Orbits Close to Asteroid 4179 Toutatis, Icarus, 132, 53 https://doi.org/10.1006/icar.1997.5870
  54. Shevchenko, V. G., & Tedesco, E. F. 2006, Asteroid Albedos Deduced from Stellar Occultations, Icarus, 184, 211 https://doi.org/10.1016/j.icarus.2006.04.006
  55. Shkuratov, I. G., & Opanasenko, N. V. 1992, Polarimetric and Photometric Properties of the Moon: Telescope Observation and Laboratory Simulation. II - The Positive Polarization, Icarus, 99, 468 https://doi.org/10.1016/0019-1035(92)90161-Y
  56. Spencer, J. R., Akimov, L. A., Angeli, C., et al. 1995, The Lightcurve of 4179 Toutatis: Evidence for Complex Rotation., Icarus, 117, 71 https://doi.org/10.1006/icar.1995.1143
  57. Stetson, P. B. 1987, DAOPHOT - A Computer Program for Crowded-field Stellar Photometry, PASP, 99, 191 https://doi.org/10.1086/131977
  58. Takahashi, Y., Busch, M. W., & Scheeres, D. J. 2013, Spin State and Moment of Inertia Characterization of 4179 Toutatis, AJ, 146, 95 https://doi.org/10.1088/0004-6256/146/4/95
  59. Tatsumi, E., Domingue, D., Hirata, N., et al. 2018, Vis-NIR Disk-integrated Photometry of Asteroid 25143 Itokawa around Opposition by AMICA/Hayabusa, Icarus, 311, 175 https://doi.org/10.1016/j.icarus.2018.04.001
  60. Tedesco, E. F., Noah, P. V., Noah, M., et al. 2002, The Supplemental IRAS Minor Planet Survey, AJ, 123, 1056 https://doi.org/10.1086/338320
  61. Usui, F., Hasegawa, S., Ishiguro, M., et al. 2014, A Comparative Study of Infrared Asteroid Surveys: IRAS, AKARI, and WISE, PASJ, 66, 56 https://doi.org/10.1093/pasj/psu037
  62. Usui, F., Kuroda, D., Muller, T. G., et al. 2011, Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey, PASJ, 63, 1117 https://doi.org/10.1093/pasj/63.5.1117
  63. van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420 https://doi.org/10.1086/323894
  64. Whipple, A. L. & Shelus, P. J. 1993, Long-term Dynamical Evolution of the Minor Planet (4179) Toutatis, Icarus, 105, 408 https://doi.org/10.1006/icar.1993.1137
  65. Widorn, T. 1967, Zur photometrischen Bestimmung der Durchmesser der Kleinen Planeten, Annalen der Universit ats-Sternwarte Wien, 27, 109
  66. Wright, E., Mainzer, A., Masiero, J., et al. 2018, Response to \An Empirical Examination of WISE/NEOWISE Asteroid Analysis and Results", arXiv:1811.01454
  67. Yu, L. L., Ji, J., & Wang, S. 2014, Shape, Thermal and Surface Properties Determination of a Candidate Spacecraft Target Asteroid (175706) 1996 FG3, MNRAS, 439, 3357 https://doi.org/10.1093/mnras/stu164
  68. Yu, L. L., & Ji, J. 2015, Surface Thermophysical Properties Determination of OSIRIS-REx Target Asteroid (101955) Bennu, MNRAS, 452, 368 https://doi.org/10.1093/mnras/stv1270
  69. Zellner, B., Leake, M., Lebertre, T., et al. 1977, Lunar and Planetary Science Conference Proceedings, 8, Lunar and Planetary Science Conference Proceedings, ed. Merril, R. B., 1091
  70. Zhao, Y., Ji, J., Huang, J., et al., 2015, Orientation and Rotational Parameters of Asteroid 4179 Toutatis: New Insights from Chang'e-2's Close Flyby, MNRAS, 450, 3620 https://doi.org/10.1093/mnras/stv792
  71. Zhao, D.-F., Liu, P., Zhao, W., et al., 2016, Reflectance of Asteroid 4179 Toutatis Based on Its Space Optical Image, AcASn, 40, 555