FIGURE 1. Graph of C(α)
References
- J.-P. Allouche, J. L. Davison, M. Queffelec, and L. Q. Zamboni, Continued fractions, J. Number Theory 91 (2001), no. 1, 39-66. https://doi.org/10.1006/jnth.2001.2669
- J.-P. Borel and F. Laubie, Quelques mots sur la droite projective reelle, J. Theor. Nombres Bordeaux 5 (1993), no. 1, 23-51. https://doi.org/10.5802/jtnb.77
- G. Cantor, De la puissance des ensembles parfaits de points, Acta Math. 4 (1884), no. 1, 381-392. https://doi.org/10.1007/BF02418423
- A. Denjoy, Sur une fonction reelle de Minkowski, J. Math. Pures Appl. 17 (1938) 105-151.
- A. A. Dushistova, I. D. Kan, and N. G. Moshchevitin, Differentiability of the Minkowski question mark function, J. Math. Anal. Appl. 401 (2013), no. 2, 774-794. https://doi.org/10.1016/j.jmaa.2012.12.058
- V. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Prace mat.-fiz. 36 (1929), 91-106.
- A. Ya. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, IL, 1964.
- D.Y. Kwon, A devil's staircase from rotations and irrationality measures for Liouville numbers, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 739-756. https://doi.org/10.1017/S0305004108001606
-
D.Y. Kwon, Moments of discrete measures with dense jumps induced by
${\beta}$ -expansions, J. Math. Anal. Appl. 399 (2013), no. 1, 1-11. https://doi.org/10.1016/j.jmaa.2012.07.014 - D.Y. Kwon, A one-parameter family of Dirichlet series whose coefficients are Sturmian words, J. Number Theory 147 (2015), 824-835. https://doi.org/10.1016/j.jnt.2014.08.018
- D.Y. Kwon, The fractional totient function and Sturmian Dirichlet series, Honam Math. J. 39 (2017), no. 2, 297-305. https://doi.org/10.5831/HMJ.2017.39.2.297
- M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, Cambridge, 2002.
- J. Paradis, P. Viader, and L. Bibiloni, The derivative of Minkowski's ?(x) function, J. Math. Anal. Appl. 253 (2001), no. 1, 107-125. https://doi.org/10.1006/jmaa.2000.7064
-
W. Parry, On the
${\beta}$ -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. https://doi.org/10.1007/bf02020954 - A. M. Rockett and P. Szusz, Continued Fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168. https://doi.org/10.1112/S0025579300000644
- R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427-439. https://doi.org/10.1090/S0002-9947-1943-0007929-6
- J. Sondow, An irrationality measure for Liouville numbers and conditional measures for Euler's constant, 23rd Journees Arithmetiques, Graz, Austria, 2003. Available at http://arxiv.org/abs/math/0307308.