DOI QR코드

DOI QR Code

ON SUFFICIENT CONDITIONS FOR CARATHÉODORY FUNCTIONS WITH THE FIXED SECOND COEFFICIENT

  • Kwon, Oh Sang (Department of Mathematics, Kyungsung University)
  • Received : 2018.06.14
  • Accepted : 2019.01.24
  • Published : 2019.06.25

Abstract

In the present paper, we derive several sufficient conditions for $Carath{\acute{e}}odory$ functions in the open unit disk ${\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$ under the constraint that the second coefficient of the function is preassigned. And, we obtain some sufficient conditions for strongly starlike functions in ${\mathbb{D}}$.

Keywords

HNSHCY_2019_v41n2_227_f0001.png 이미지

FIGURE 1. The image of $\hat{p}(z)+z\hat{p}'(z)\;on\;\mathbb{D}$

HNSHCY_2019_v41n2_227_f0002.png 이미지

FIGURE 2. The image of $p_{\bar{f}}$ on $\mathbb{D}$

References

  1. R. M. Ali, S. Nagpal, V. Ravichandran, Second-order differential subordination for analytic functions with fixed initial coefficient, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 611-629.
  2. R. M. Ali, N.E. Cho, N. Jain, V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat 26(3) (2012), 553-561. https://doi.org/10.2298/FIL1203553A
  3. R. M. Ali, N. Jain, V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218(11) (2012), 6557-6565. https://doi.org/10.1016/j.amc.2011.12.033
  4. A. A. Attiya, M. AM. Nasr, On sufficient conditions for Caratheodory functions with applications, J. Inequal. Appl. 2013:191 (2013), 1-10.
  5. N. E. Cho, I. H. Kim, Conditions for Caratheodory functions, J. Inequal. Appl. Art. ID 601597 (2009), 10 pp.
  6. P. Delsarte, Y. Genin, A simple proof of Livingston's inequality for Caratheodory functions, Proc. Amer. Math. Soc. 107(4) (1989), 1017-1020. https://doi.org/10.1090/S0002-9939-1989-0984785-7
  7. M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc. 18 (1967), 412-418. https://doi.org/10.1090/S0002-9939-1967-0214749-8
  8. I. H. Kim, N. E. Cho, Sufficient conditions for Caratheodory functions, Comput. Math. Appl. 59(6) (2010), 2067-2073. https://doi.org/10.1016/j.camwa.2009.12.012
  9. S. S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81 (1975), 79-81. https://doi.org/10.1090/S0002-9904-1975-13643-3
  10. M. Nunokawa, Differential inequalities and Caratheodory functions, Proc. Japan Acad. Ser. A Math. Sci. 65(10) (1989), 326-328. https://doi.org/10.3792/pjaa.65.326
  11. M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad. Ser. A Math. Sci. 68(6) (1992), 152-153. https://doi.org/10.3792/pjaa.68.152
  12. M. Nunokawa, A. Ikeda, N. Koike, Y. Ota, H. Saitoh, Differential inequalities and Caratheodory functions, J. Math. Anal. Appl. 212(1) (1997), 324-332. https://doi.org/10.1006/jmaa.1997.5519
  13. M. Nunokawa, S. Owa, N. Takahashi, H. Saitoh, Sufficient conditions for Caratheodory functions, Indian J. Pure Appl. Math. 33(9) (2002), 1385-1390.
  14. K. S. Padmanabhan, Growth estimates for certain classes of convex and close-to-convex functions (the Gronwall problem), J. Indian Math. Soc. (N.S.) 68(1-4) (2001), 177-189.
  15. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
  16. H. Shiraishi, S. Owa, H. M. Srivastava, Sufficient conditions for strongly Caratheodory functions, Comput. Math. Appl. 62(8) (2011), 2978-2987. https://doi.org/10.1016/j.camwa.2011.08.004
  17. D. E. Tepper, On the radius of convexity and boundary distortion of Schlicht functions, Trans. Amer. Math. Soc. 150 (1970), 519-528. https://doi.org/10.1090/S0002-9947-1970-0268370-0
  18. Q. H. Xu, T. Yang, H. M. Srivastava, Sufficient conditions for a certain general class of Caratheodory functions, Filomat 30(13) (2016), 3615-3625. https://doi.org/10.2298/FIL1613615X
  19. D. Yang, S. Owa, K. Ochiai, Sufficient conditions for Caratheodory functions, Comput. Math. Appl. 51(3-4) (2006), 467-474. https://doi.org/10.1016/j.camwa.2005.10.008