DOI QR코드

DOI QR Code

Recent advances of 17O NMR spectroscopy

  • Lin, Yuxi (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Intitute) ;
  • Kim, Hak Nam (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Intitute) ;
  • Lee, Young-Ho (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Intitute)
  • Received : 2019.06.19
  • Accepted : 2019.06.20
  • Published : 2019.06.20

Abstract

Study on the structure and dynamics of molecules at the atomic level is of great significance for understanding their function and stability as well as roles for various chemico-physical and biological processes. $^{17}O$ NMR spectroscopy has appeared as an elegant technique for investigating of the physicochemical and structural properties of oxygen-containing compounds such as metal organic frameworks and nanosized oxides. This method has drawn much attention as it provides unique insights into the properties of targets based on atomistic information of local oxygen environments which is otherwise difficult to obtain using other methods. In this mini review, we introduce and discuss the recent study and developments of $^{17}O$ NMR techniques which are tailored for the investigation on the structure and dynamics of water and inorganic materials.

Keywords

JGGMB2_2019_v23n2_56_f0001.png 이미지

Figure 2. 17O NMR spectra of ceria nanoparticle. 17O NMR spectra for ceria nanoparticles were acquired at temperatures ranging from 523 to 1073 K and at two external magnetic fields, 9.4T and 14.1 T. In comparison, the predicted chemical shifts for oxygen ions of nanosized ceria based on density functional theory (DFT) calculation were displayed. Re-produced with permission from Ref. [20]. Reprinted with permission from AAAS.

JGGMB2_2019_v23n2_56_f0002.png 이미지

Figure 1. (a and b) 17O MAS NMR spectra of bound water in barium chlorate monohydrate were obtained at 105 ± 5 K in the presence (a) and absence of 100 kHz continuous-wave 1H decoupling (b). Asterisks (*) represent spinning sidebands. Reproduced with permission from Ref. [11]. Copyright 2016 American Chemical Society.

References

  1. F. Alder and F. C. Yu, Phys. Rev. 81, 1067 (1951) https://doi.org/10.1103/PhysRev.81.1067
  2. I. P. Gerothanassis, Prog. Nucl. Magn. Reson. Spectrosc. 56, 95 (2010) https://doi.org/10.1016/j.pnmrs.2009.09.002
  3. G. Wu, Solid State Nucl. Magn. Reson. 73, 1 (2016) https://doi.org/10.1016/j.ssnmr.2015.11.001
  4. V. K. Michaelis, E. Markhasin, E. Daviso, J. Herzfeld, and R. G. Griffin, J. Phys. Chem. Lett. 3, 2030 (2012) https://doi.org/10.1021/jz300742w
  5. F. A. Perras, Z. Wang, P. Naik, Slowing, II, and M. Pruski, Angew. Chem. Int. Ed Engl. 56, 9165 (2017) https://doi.org/10.1002/anie.201704032
  6. V. K. Michaelis, B. Corzilius, A. A. Smith, and R. G. Griffin, J. Phys. Chem. B 117, 14894 (2013) https://doi.org/10.1021/jp408440z
  7. E. Ravera, B. Corzilius, V. K. Michaelis, C. Rosa, R. G. Griffin, C. Luchinat, and I. Bertini, J. Am. Chem. Soc. 135, 1641 (2013) https://doi.org/10.1021/ja312553b
  8. F. A. Perras, T. Kobayashi, and M. Pruski, J. Am. Chem. Soc. 137, 8336 (2015) https://doi.org/10.1021/jacs.5b03905
  9. P. Ball, Proc. Natl. Acad. Sci. U. S. A. 114, 13327 (2017) https://doi.org/10.1073/pnas.1703781114
  10. R. Li, Z. Jiang, H. Yang, and Y. Guan, J. Mol. Liq. 126, 14 (2006) https://doi.org/10.1016/j.molliq.2004.04.004
  11. E. G. Keeler, V. K. Michaelis, and R. G. Griffin, J. Phys. Chem. B 120, 7851 (2016) https://doi.org/10.1021/acs.jpcb.6b05755
  12. E. G. Keeler, V. K. Michaelis, M. T. Colvin, I. Hung, P. L. Gor'kov, T. A. Cross, Z. Gan, and R. G. Griffin, J. Am. Chem. Soc. 139, 17953 (2017) https://doi.org/10.1021/jacs.7b08989
  13. W. Makulski, M. Wilczek, and K. Jackowski, Phys. Chem. Chem. Phys. 20, 22468 (2018) https://doi.org/10.1039/C8CP01748D
  14. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed Engl. 47, 2930 (2008) https://doi.org/10.1002/anie.200702505
  15. A. T. Bell, Science 299, 1688 (2003) https://doi.org/10.1126/science.1083671
  16. S. Schramm, R. J. Kirkpatrick, and E. Oldfield, J. Am. Chem. Soc. 105, 2483 (1983) https://doi.org/10.1021/ja00346a068
  17. E. R. van Eck, M. E. Smith, and S. C. Kohn, Solid State Nucl. Magn. Reson. 15, 181 (1999) https://doi.org/10.1016/S0926-2040(99)00055-7
  18. A. Rigamonti, F. Borsa, and P. Carretta, Rep. Prog. Phys. 61, 1367 (1998) https://doi.org/10.1088/0034-4885/61/10/002
  19. B. R. Cherry, T. M. Alam, C. Click, R. K. Brow, and Z. Gan, J. Phys. Chem. B 107, 4894 (2003) https://doi.org/10.1021/jp0272670
  20. M. Wang, X. P. Wu, S. Zheng, L. Zhao, L. Li, L. Shen, Y. Gao, N. Xue, X. Guo, W. Huang, Z. Gan, F. Blanc, Z. Yu, X. Ke, W. Ding, X. Q. Gong, C. P. Grey, and L. Peng, Sci. Adv. 1, e1400133 (2015) https://doi.org/10.1126/sciadv.1400133
  21. E. Moser, E. Laistler, F. Schmitt, and G. Kontaxis, Front. in Phys. 5, doi: 10.3389/fphy.2017.00033 (2017)
  22. T. X. Metro, C. Gervais, A. Martinez, C. Bonhomme, and D. Laurencin, Angew. Chem. Int. Ed Engl. 56, 6803 (2017) https://doi.org/10.1002/anie.201702251
  23. C. de la Calle Arregui, J. A. Purdie, C. A. Haslam, R. V. Law, and J. M. Sanderson, Chem. Phys. Lipids 195, 58 (2016) https://doi.org/10.1016/j.chemphyslip.2015.12.003