DOI QR코드

DOI QR Code

토석류 발생지역 지형자료 구축 및 FLO-2D 모델링

Terrain Data Construction and FLO-2D Modeling of the Debris-Flow Occurrences Area

  • 오채연 (강원대학교 방재전문대학원) ;
  • 전계원 (강원대학교 방재전문대학원)
  • Oh, Chae-Yeon (Graduate School of Disaster Prevention, Kangwon National University) ;
  • Jun, Kye-Won (Graduate School of Disaster Prevention, Kangwon National University)
  • 투고 : 2019.11.05
  • 심사 : 2019.12.09
  • 발행 : 2019.12.31

초록

토석류의 발생은 산악지역에 위치한 도로나 주택가에 심각한 위험을 초래하며 많은 재산의 손실을 발생시킨다. 본 연구에서는 산악지역에서 발생한 토석류를 모의하기 위해 2개의 유역을 선정하고 공간자료를 구축하였다. 첫 번째 유역의 경우 지상 LiDAR를 활용하여 토석류 발생 구간을 스캔하고 지형 자료를 구축하였으며 두 번째 유역의 경우는 드론을 활용하여 유역의 퇴적부를 촬영하고 DSM(Digital surface model)을 생성하였다. 그리고 토석류 발생이 하류부에 미치는 영향을 분석하기 위해 2차원 상용 모델인 FLO-2D를 사용하여 토석류의 흐름 영역을 시뮬레이션하고 지상 LiDAR 및 드론 측정데이터의 퇴적부와 비교분석하였다.

Occurrences of debris flow are a serious danger to roads and residential located in mountainous areas and cause a lot of property loss. In this study, two basins were selected and spatial data were constructed to simulate the occurred debris flow from mountainous areas. The first basin was to use the Terrestrial LiDAR to scan the debris flow occurrence section and to build terrain data. For the second basin, use drones the sediment in the basin was photographed and DSM (Digital surface model) was generated. And to analyze the effect of the occurrence of debris flow on downstream side, FLO-2D, two-dimensional commercial model, was used to simulate the flow region of the debris flow. And it was compared with the sedimentation area of terrestrial LiDAR and drone measurement data.

키워드

참고문헌

  1. FLO-2D (2009). FLO-2D Reference Manual. http://www.flo-2d.com.
  2. Kim, S. G., Paik, J. C., and Kim, K. S. (2013). Run-out Modeling of Debris Flows in MT. Umyeon using FLO-2D. Journal of the Korean Society of Civil Engineers. 33(3): 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  3. Lee, S. Y., Jeong, G. Y., and Pak, S. J. (2015). Evaluating Geomorphological Classification Systems to Predict the Occurrence of landslides in Mountainous Region. Journal of the Korean Geographical Society. 50(5): 485-503.
  4. Lim, S. B., Seo, C. W., and Yun, H. C. (2015). Digital Map Updates with UAV Photogrammetric Methods. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 33(5): 397-405. https://doi.org/10.7848/ksgpc.2015.33.5.397
  5. O'Brien, J. S. Julien, P. Y., and Fullerton, W. T. (1993). Two-dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering. 119(2): 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
  6. Park, J. K. and Jung, K. Y. (2018). Investigation and Analysis of Forest Geospatial Information Using Drone. Journal of the Korea Academia-Industrial Cooperation Society. 19(2): 602-607. https://doi.org/10.5762/KAIS.2018.19.2.602
  7. Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F. (2006). Erosion Processes in Steep Terrain-Truths, Myths, and Uncertainties Related to Forest Management in Southeast Asia. Forest Ecology and Management. 224: 199-225. https://doi.org/10.1016/j.foreco.2005.12.019