Acknowledgement
Supported by : Central Universities
References
- Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana, G.V. (2007), "Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling", Can. Geotech. J., 44(8), 942-956. https://doi.org/10.1139/t07-031.
- Bai, B. and Shi, X.Y. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. http://dx.doi.org/10.12989/gae.2017.12.4.707.
- Boudali, M., Leroueil, S. and Srinivasa Murthy, B.R. (1994), "Viscous behaviour of natural clays", Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, January.
- Campanella, R.G. and Mitchell, J.K. (1968), "Influence of temperature variation on soil behavior", J. Soil Mech. Found. Div., 94, 609-734.
- Cekerevac, C. and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behaviour of a clay", Int. J. Numer. Anal. Meth. Geomech., 28(3), 209-228. https://doi.org/10.1002/nag.332.
- Chen, X.P., Luo, Q.Z. and Zhou, Q.J. (2014), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., 7(3), 279-295. http://dx.doi.org/10.12989/gae.2014.7.3.279.
- Coccia, C.J.R. and McCartney, J.S. (2016), "Thermal volume change of poorly draining soils I: Critical assessment of volume change mechanisms", Comput. Geotech., 80, 26-40. https://doi.org/10.1016/j.compgeo.2016.06.009.
- Eriksson, L.G. (1989), "Temperature effects on consolidation properties of sulphide clays", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, August.
- Graham, J., Crooks, J.H.A. and Bell, A.L. (1983), "Time effects on the stress-strain behaviour of natural soft clays", Geotechnique, 33(3), 327-340. https://doi.org/10.1680/geot.1983.33.3.327.
- Hueckel, T., Pellegrini, R. and Del Olmo, C. (1998), "A constitutive study of thermo-elasto-plasticity of deep carbonatic clays", Int. J. Numer. Anal. Meth. Geomech., 22(7), 549-574. https://doi.org/10.1002/(SICI)10969853(199807)22:7<549::AID-NAG927>3.0.CO;2-R.
- Jarad, N., Cuisinier O. and Masrouri F. (2017), "Effect of temperature and strain rate on the consolidation behaviour of compacted clayey soils", Eur. J. Environ. Civ. Eng., (3), 1-18. https://doi.org/10.1080/19648189.2017.1311806.
- Jin, Y.F., Yin, Z.Y., Riou, Y. and Hicher, P.Y. (2017b), "Identifying creep and destructuration related soil parameters by optimization methods", KSCE J. Civ. Eng., 21(4), 1123-1134. https://doi.org/10.1007/s12205-016-0378-8.
- Jin, Y.F., Yin, Z.Y., Shen, S.L. and Zhang, D.M. (2017a), "A new hybrid real-coded genetic algorithm and its application to parameters identification of soils", Inverse Probl. Sci. Eng., 25(9), 1343-1366. https://doi.org/10.1080/17415977.2016.1259315.
- Jin, Y.F., Yin, Z.Y., Wu, Z.X. and Zhou, W.H. (2018), "Identifying parameters of easily crushable sand and application to offshore pile driving", Ocean Eng, 154, 416-429. https://doi.org/10.1016/j.oceaneng.2018.01.023.
- Karstunen, M. and Yin, Z.Y. (2010), "Modelling time-dependent behaviour of Murro test embankment", Geotechnique, 60(10), 735-749. https://doi.org/10.1680/geot.8.P.027.
- Laloui, L. and Cekerevac C. (2003), "Thermo-plasticity of clays: An isotropic yield mechanism", Comput. Geotech., 30(8), 649-660. https://doi.org/10.1016/j.compgeo.2003.09.001.
- Laloui, L., Leroueil, S. and Chalindar, S. (2008), "Modelling the combined effect of strain rate and temperature on one-dimensional compression of soils", Can. Geotech. J., 45(12), 1765-1777. https://doi.org/10.1139/t08-093.
-
Leroueil, S., Kabbaj, M. and Tavenas, F. (1988), "Study of the validity of a
${\sigma}^{\prime}_v-{\varepsilon}_v-{\varepsilon}_v$ model in in situ conditions", Soil. Found., 28(3), 13-25. https://doi.org/10.3208/sandf1972.28.3_13 - Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1016/0148-9062(85)90175-5.
- Leroueil, S., Tavenas, F., Samson, L. and Morin, P. (1983), "Preconsolidation pressure of Champlain clays. Part II. Laboratory determination", Can. Geotech. J., 20(4), 803-816. https://doi.org/10.1139/t84-066.
- Marques, M.E.S. and Leroueil, S. (2004), "Viscous behaviour of St-Roch-de-l'Achigan clay, Quebec", Can. Geotech. J., 41(3), 25-38. https://doi.org/10.1139/t05-013.
- Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, Wiley, New York, U.S.A.
- Moritz, L. (1995), "Geotechnical properties of clay at elevated temperatures", Report 47, Swedish Geotechnical Institute, Linkoping, Sweden.
- Ng, C.W.W., Mu, Q.Y. and Zhou, C. (2019), "Effects of specimen preparation method on the volume change of clay under cyclic thermal loads", Geotechnique, 69(2), 146-150. https://doi.org/10.1680/jgeot.16.p.293.
- Rangeard, D. (2002), "Identification des caracteristiques hydromecaniques d'une argile par analyse inverse des essais pressiometriques", Ph.D. Dissertation, Ecole Centrale de Nantes et l'Universite de Nantes, Nantes, France
- Sultan, N., Delage, P. and Cui, Y.J. (2002), "Temperature effects on the volume change behaviour of Boom clay", Eng. Geol., 64(2-3), 135-145. https://doi.org/10.1016/S0013-7952(01)00143-0.
- Tanaka, N. (1995), "Thermal elastic plastic behaviour and modelling of saturated clays", Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.
- Tsutsumi, A. and Tanaka, H. (2012), "Combined effects of strain rate and temperature on consolidation behavior of clayey soils", Soil. Found., 52(2), 207-215. https://doi.org/10.1016/j.sandf.2012.02.001.
- Wang, L.Z., Wang, K.J. and Hong, Y. (2016), "Modeling temperature-dependent behavior of soft clay", J. Eng. Mech., 142(8), 04016054. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001108.
- Yao, Y.P. and Zhou, A.N. (2013). "Non-isothermal unified hardening model: A thermo-elastoplastic model for clays", Geotechnique, 63(15), 1328-1345. https://doi.org/10.1680/geot.13.P.035.
- Yashima, A., Leroueil, S., Oka, F. and Guntoro, I. (1998), "Modelling temperature and strain rate dependent behavior of clays: one dimensional consolidation", Soil. Found., 38(2), 63-73. https://doi.org/10.3208/sandf.38.2_63.
- Yin, Z.Y. and Wang, J.H. (2012), "A one-dimensional strain-rate based model for soft structured clays", Sci. Chin. Technol. Sci., 55(1), 90-100. https://doi.org/10.1007/s11431-011-4513-y.
- Yin, Z.Y., Chang, C.S., Karstunen, M. and Hicher, P.Y. (2010), "An anisotropic elastic-viscoplastic model for soft clays", Int. J. Solids Struct., 47(5), 665-677. https://doi.org/10.1016/j.ijsolstr.2009.11.004.
- Yin, Z.Y., Jin, Y.F., Shen, J.S. and Hicher, P.Y. (2018), "Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement", Int. J. Numer. Anal. Meth. Geomech., 42(1), 70-94. https://doi.org/10.1002/nag.2714.
- Yin, Z.Y., Jin, Y.F., Shen, S.L. and Huang, H.W. (2017), "An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model", Acta Geotech., 12(4), 849-867. https://doi.org/10.1007/s11440-016-0486-0.
- Yin, Z.Y., Karstunen, M., Chang, C.S. and Koskinen, M. (2011), "Modeling time-dependent behavior of soft sensitive clay", J. Geotech. Geoenviron. Eng., 137(11), 1103-1113. https://doi.org/10.1061/(asce)gt.1943-5606.0000527.
- Yin, Z.Y., Zhu, Q.Y. and Zhang, D.M. (2017), "Comparison of two creep degradation modeling approaches for soft structured soils", Acta Geotech., 12(6), 1395-1413. http://dx.doi.org/10.1007/s11440-017-0556-y.
- Zhu, Q.Y., Yin, Z.Y., Zhang, D.M. and Huang, H.W. (2017), "Numerical modeling of creep degradation of natural soft clays under one-dimensional condition". KSCE J. Civ. Eng., 21(5), 1668-1678. https://doi.org/10.1007/s12205-016-1026-z.
Cited by
- Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation vol.23, pp.6, 2019, https://doi.org/10.12989/gae.2020.23.6.561