DOI QR코드

DOI QR Code

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin (State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology) ;
  • Jin, Yin-Fu (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Shang, Xiang-Yu (State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology) ;
  • Chen, Tuo (State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology)
  • Received : 2018.03.22
  • Accepted : 2019.05.13
  • Published : 2019.06.10

Abstract

Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Ramana, G.V. (2007), "Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling", Can. Geotech. J., 44(8), 942-956. https://doi.org/10.1139/t07-031.
  2. Bai, B. and Shi, X.Y. (2017), "Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading", Geomech. Eng., 12(4), 707-721. http://dx.doi.org/10.12989/gae.2017.12.4.707.
  3. Boudali, M., Leroueil, S. and Srinivasa Murthy, B.R. (1994), "Viscous behaviour of natural clays", Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, January.
  4. Campanella, R.G. and Mitchell, J.K. (1968), "Influence of temperature variation on soil behavior", J. Soil Mech. Found. Div., 94, 609-734.
  5. Cekerevac, C. and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behaviour of a clay", Int. J. Numer. Anal. Meth. Geomech., 28(3), 209-228. https://doi.org/10.1002/nag.332.
  6. Chen, X.P., Luo, Q.Z. and Zhou, Q.J. (2014), "Time-dependent behaviour of interactive marine and terrestrial deposit clay", Geomech. Eng., 7(3), 279-295. http://dx.doi.org/10.12989/gae.2014.7.3.279.
  7. Coccia, C.J.R. and McCartney, J.S. (2016), "Thermal volume change of poorly draining soils I: Critical assessment of volume change mechanisms", Comput. Geotech., 80, 26-40. https://doi.org/10.1016/j.compgeo.2016.06.009.
  8. Eriksson, L.G. (1989), "Temperature effects on consolidation properties of sulphide clays", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, August.
  9. Graham, J., Crooks, J.H.A. and Bell, A.L. (1983), "Time effects on the stress-strain behaviour of natural soft clays", Geotechnique, 33(3), 327-340. https://doi.org/10.1680/geot.1983.33.3.327.
  10. Hueckel, T., Pellegrini, R. and Del Olmo, C. (1998), "A constitutive study of thermo-elasto-plasticity of deep carbonatic clays", Int. J. Numer. Anal. Meth. Geomech., 22(7), 549-574. https://doi.org/10.1002/(SICI)10969853(199807)22:7<549::AID-NAG927>3.0.CO;2-R.
  11. Jarad, N., Cuisinier O. and Masrouri F. (2017), "Effect of temperature and strain rate on the consolidation behaviour of compacted clayey soils", Eur. J. Environ. Civ. Eng., (3), 1-18. https://doi.org/10.1080/19648189.2017.1311806.
  12. Jin, Y.F., Yin, Z.Y., Riou, Y. and Hicher, P.Y. (2017b), "Identifying creep and destructuration related soil parameters by optimization methods", KSCE J. Civ. Eng., 21(4), 1123-1134. https://doi.org/10.1007/s12205-016-0378-8.
  13. Jin, Y.F., Yin, Z.Y., Shen, S.L. and Zhang, D.M. (2017a), "A new hybrid real-coded genetic algorithm and its application to parameters identification of soils", Inverse Probl. Sci. Eng., 25(9), 1343-1366. https://doi.org/10.1080/17415977.2016.1259315.
  14. Jin, Y.F., Yin, Z.Y., Wu, Z.X. and Zhou, W.H. (2018), "Identifying parameters of easily crushable sand and application to offshore pile driving", Ocean Eng, 154, 416-429. https://doi.org/10.1016/j.oceaneng.2018.01.023.
  15. Karstunen, M. and Yin, Z.Y. (2010), "Modelling time-dependent behaviour of Murro test embankment", Geotechnique, 60(10), 735-749. https://doi.org/10.1680/geot.8.P.027.
  16. Laloui, L. and Cekerevac C. (2003), "Thermo-plasticity of clays: An isotropic yield mechanism", Comput. Geotech., 30(8), 649-660. https://doi.org/10.1016/j.compgeo.2003.09.001.
  17. Laloui, L., Leroueil, S. and Chalindar, S. (2008), "Modelling the combined effect of strain rate and temperature on one-dimensional compression of soils", Can. Geotech. J., 45(12), 1765-1777. https://doi.org/10.1139/t08-093.
  18. Leroueil, S., Kabbaj, M. and Tavenas, F. (1988), "Study of the validity of a ${\sigma}^{\prime}_v-{\varepsilon}_v-{\varepsilon}_v$ model in in situ conditions", Soil. Found., 28(3), 13-25. https://doi.org/10.3208/sandf1972.28.3_13
  19. Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1016/0148-9062(85)90175-5.
  20. Leroueil, S., Tavenas, F., Samson, L. and Morin, P. (1983), "Preconsolidation pressure of Champlain clays. Part II. Laboratory determination", Can. Geotech. J., 20(4), 803-816. https://doi.org/10.1139/t84-066.
  21. Marques, M.E.S. and Leroueil, S. (2004), "Viscous behaviour of St-Roch-de-l'Achigan clay, Quebec", Can. Geotech. J., 41(3), 25-38. https://doi.org/10.1139/t05-013.
  22. Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, Wiley, New York, U.S.A.
  23. Moritz, L. (1995), "Geotechnical properties of clay at elevated temperatures", Report 47, Swedish Geotechnical Institute, Linkoping, Sweden.
  24. Ng, C.W.W., Mu, Q.Y. and Zhou, C. (2019), "Effects of specimen preparation method on the volume change of clay under cyclic thermal loads", Geotechnique, 69(2), 146-150. https://doi.org/10.1680/jgeot.16.p.293.
  25. Rangeard, D. (2002), "Identification des caracteristiques hydromecaniques d'une argile par analyse inverse des essais pressiometriques", Ph.D. Dissertation, Ecole Centrale de Nantes et l'Universite de Nantes, Nantes, France
  26. Sultan, N., Delage, P. and Cui, Y.J. (2002), "Temperature effects on the volume change behaviour of Boom clay", Eng. Geol., 64(2-3), 135-145. https://doi.org/10.1016/S0013-7952(01)00143-0.
  27. Tanaka, N. (1995), "Thermal elastic plastic behaviour and modelling of saturated clays", Ph.D. Dissertation, University of Manitoba, Winnipeg, Manitoba, Canada.
  28. Tsutsumi, A. and Tanaka, H. (2012), "Combined effects of strain rate and temperature on consolidation behavior of clayey soils", Soil. Found., 52(2), 207-215. https://doi.org/10.1016/j.sandf.2012.02.001.
  29. Wang, L.Z., Wang, K.J. and Hong, Y. (2016), "Modeling temperature-dependent behavior of soft clay", J. Eng. Mech., 142(8), 04016054. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001108.
  30. Yao, Y.P. and Zhou, A.N. (2013). "Non-isothermal unified hardening model: A thermo-elastoplastic model for clays", Geotechnique, 63(15), 1328-1345. https://doi.org/10.1680/geot.13.P.035.
  31. Yashima, A., Leroueil, S., Oka, F. and Guntoro, I. (1998), "Modelling temperature and strain rate dependent behavior of clays: one dimensional consolidation", Soil. Found., 38(2), 63-73. https://doi.org/10.3208/sandf.38.2_63.
  32. Yin, Z.Y. and Wang, J.H. (2012), "A one-dimensional strain-rate based model for soft structured clays", Sci. Chin. Technol. Sci., 55(1), 90-100. https://doi.org/10.1007/s11431-011-4513-y.
  33. Yin, Z.Y., Chang, C.S., Karstunen, M. and Hicher, P.Y. (2010), "An anisotropic elastic-viscoplastic model for soft clays", Int. J. Solids Struct., 47(5), 665-677. https://doi.org/10.1016/j.ijsolstr.2009.11.004.
  34. Yin, Z.Y., Jin, Y.F., Shen, J.S. and Hicher, P.Y. (2018), "Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement", Int. J. Numer. Anal. Meth. Geomech., 42(1), 70-94. https://doi.org/10.1002/nag.2714.
  35. Yin, Z.Y., Jin, Y.F., Shen, S.L. and Huang, H.W. (2017), "An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model", Acta Geotech., 12(4), 849-867. https://doi.org/10.1007/s11440-016-0486-0.
  36. Yin, Z.Y., Karstunen, M., Chang, C.S. and Koskinen, M. (2011), "Modeling time-dependent behavior of soft sensitive clay", J. Geotech. Geoenviron. Eng., 137(11), 1103-1113. https://doi.org/10.1061/(asce)gt.1943-5606.0000527.
  37. Yin, Z.Y., Zhu, Q.Y. and Zhang, D.M. (2017), "Comparison of two creep degradation modeling approaches for soft structured soils", Acta Geotech., 12(6), 1395-1413. http://dx.doi.org/10.1007/s11440-017-0556-y.
  38. Zhu, Q.Y., Yin, Z.Y., Zhang, D.M. and Huang, H.W. (2017), "Numerical modeling of creep degradation of natural soft clays under one-dimensional condition". KSCE J. Civ. Eng., 21(5), 1668-1678. https://doi.org/10.1007/s12205-016-1026-z.

Cited by

  1. Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation vol.23, pp.6, 2019, https://doi.org/10.12989/gae.2020.23.6.561