과제정보
연구 과제 주관 기관 : Central Universities, China Postdoctoral Science Foundation
참고문헌
- Azhari, M., Shahidi, A.R. and Saadatpour, M.M. (2005), "Local and post local buckling of stepped and perforated thin plates", Appl. Math. Model., 29(7), 633-652. https://doi.org/10.1016/j.apm.2004.10.004
- Chehil, D.S. and Dua S.S. (1973), "Buckling of rectangular plates with general variation in thickness", J. Appl. Mech.-T. ASME, 40(3), 745-751. https://doi.org/10.1115/1.3423084
- Chen, L., Rotter, J.M. and Doerich-Stavridis, C. (2012), "Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls", Thin Wall. Struct., 61, 162-168. https://doi.org/10.1016/j.tws.2012.07.009
- Eisenberger, M. and Alexandrov, A. (2003), "Buckling loads of variable thickness thin isotropic plates", Thin Wall. Struct., 41(9), 871-889. https://doi.org/10.1016/S0263-8231(03)00027-2
- Gong, J., Tao, J., Zhao, J., Zeng, S. and Jin, T. (2013), "Buckling analysis of open top tanks subjected to harmonic settlement", Thin Wall. Struct., 63, 37-43. https://doi.org/10.1016/j.tws.2012.09.009
- Kobayashi, H. and Sonoda, K. (1990), "Buckling of rectangular plates with tapered thickness", J. Struct. Eng.-ASCE, 116(5), 1278-1289. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1278)
- Li, R., Zheng, X., Wang, H., Xiong, S., Yan, K. and Li, P. (2018), "New analytic buckling solutions of rectangular thin plates with all edges free", Int. J. Mech. Sci., 144, 67-73. https://doi.org/10.1016/j.ijmecsci.2018.05.041
- Minh, P.P., Van Do, T., Duc, D.H. and Nguyen, D.D. (2018), "The stability of cracked rectangular plate with variable thickness using phase field method", Thin Wall. Struct., 129, 157-165. https://doi.org/10.1016/j.tws.2018.03.028
- Navaneethakrishnan, P.V. (1988), "Buckling of nonuniform plates: spline method", J. Eng. Mech.-ASCE, 114(5), 893-898. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:5(893)
- Nerantzaki, M.S. and Katsikadelis, J.T. (1996), "Buckling of plates with variable thickness-an analog equation solution", Eng. Anal. Bound. Elem., 18(2), 149-154. https://doi.org/10.1016/S0955-7997(96)00045-8
- Rajasekaran, S. and Wilson, A. J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
- Saeidifar, M., Sadeghi, S.N. and Sayiz, M.R. (2010), "Analytical solution for the buckling of rectangular plates under uni-axial compression with variable thickness and elasticity modulus in the y-direction", P. I. Mech. Eng. C-J. Mec., 224(1), 33-41. https://doi.org/10.1243/09544062JMES1562
- Wang, B., Li, P. and Li, R. (2016), "Symplectic superposition method for new analytic buckling solutions of rectangular thin plates", Int. J. Mech. Sci., 119, 432-441. https://doi.org/10.1016/j.ijmecsci.2016.11.006
- Wang, X., Wang, Y. and Ge, L. (2016), "Accurate buckling analysis of thin rectangular plates under locally distributed compressive edge stresses", Thin Wall. Struct., 100, 81-92. https://doi.org/10.1016/j.tws.2015.12.002
- Wilson, A.J. and Rajasekaran, S. (2013), "Elastic stability of all edges clamped stepped and stiffened rectangular plate under uni-axial, bi-axial and shearing forces", Meccanica, 48(10), 2325-2337. https://doi.org/10.1007/s11012-013-9751-6
- Wilson, A.J. and Rajasekaran, S. (2014), "Elastic stability of all edges simply supported, stepped and stiffened rectangular plate under Biaxial loading", Appl. Math. Model., 38(2), 479-495. https://doi.org/10.1016/j.apm.2013.06.028
- Wittrick, W.H. and Ellen, C.H. (1962), "Buckling of tapered rectangular plates in compression", Ae. Q., 13(4), 308-326.
- Xiang, Y. and Wang, C.M. (2002), "Exact buckling and vibration solutions for stepped rectangular plates", J. Sound Vib., 250(3), 503-517. https://doi.org/10.1006/jsvi.2001.3922
- Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindlin plates", Int. J. Solids Struct., 41, 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
피인용 문헌
- A Parametric Study on the Elliptical hole Effects of Laminate Composite Plates under Thermal Buckling Load vol.27, pp.1, 2019, https://doi.org/10.1515/secm-2020-0019
- A Parametric Study on the Elliptical hole Effects of Laminate Composite Plates under Thermal Buckling Load vol.27, pp.1, 2019, https://doi.org/10.1515/secm-2020-0019