Fig. 1. Schematic diagram of the a) IT located and b) SCW located at Kongju National University
Fig. 2. Box plot definition.
Fig. 3. Background inflow and outflow pollutant concentrations in the IT and SCW.
Fig. 4. Seasonal inflow and outflow unit pollutant loads in the a) IT and b) SCW.
Fig. 5. Particle size distribution and sedimentation rate in the a) IT and b) SCW.
Fig. 6. Mean pollutant load distribution in the a) IT and b) SCW sediments
Fig. 7. Comparison between mean sediment and influent stormwater pollutant loads in the a) IT and b) SCW
Table 1. Facility design and catchment area characteristics
Table 2. Summary of monitored rainfall events
References
- Ali, H., Khan, E., & Sajad, M. (2013). Phytoremediation of heavt metals - Concepts and applications. Chemosphere, 869-881. doi:10.1016/j.chemosphere.2013.01.075
- Alias, N., Liu, A., Goonetilleke, A., & Egodawatta, P. (2014). Time as the critical factor in the investigation of the relationship between pollutant wash-off and rainfall characteristics. Ecological engineering, 301-305. doi:10.1016/j.ecoleng.2014.01.008
- Alihan J. C., Flores, P.E., Geronimo, F.K. F., Kim, L.H. (2018). Evaluation of a small HSSF constructed wetland in treating stormwater runoff using SWMM. Desalination and water treatment, 123-129. doi: 10.5004/dwt.2018.21823
- American Public Health Association; American Waterworks Association; Water Environment Federation. (1992). Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association.
- Carter, M., & Gregorich, E. (2006). Spoil Sampling and Methods of Analysis. Boca Raton: CRC Press.
- Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science. doi:10.1155/2014/752708
- Choi, J., Lee, O., Lee, J., & Kim, S. (2019). Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea. Membrane and Water Treatment, 19-28. doi:10.12989/mwt.2019.10.1.019
- Farraji, H., Zaman, N. Q., Tajuddin, R. M., & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int J Env Tech Sci, 69-75.
- Gill, L. W., Ring, P., Higgins, N. M., & Johnston, P. M. (2014). Accumulation of heavy metals in a constructed wetland treating road runoff. Ecological Engineering, 133-139. doi:10.1016/j.ecoleng.2014.03.056
- Guerra, H. B., Yu, J., & Kim, Y. (2018). Variation of Flow and Filtration Mechanisms in an Infiltration Trench. Journal of Wetlands Research, 63-71. doi: 10.17663/JWR.2018.20.1.063
- Guo, Y. & Gao, T. (2016). Analytical equations for estimating the total runoff reduction efficiency of infiltration trenches. Journal of Sustainable Water in Built Environment, 06016001. doi:10.1061/jswbay.0000809
- Hamel, P., Daly, E., & Fletcher, T. D. (2013). Source-control stormwater management for mitigating the mpacts of urbanisation on baseflow: A review. Journal of Hydrology, 201-211. doi:10.1016/j.jhydrol.2013.01.001
- Houle, J. J., Roseen, R. M., & Ballestero, T. P. (2013). Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. Journal of Environmental Engineering, 932-938. doi:10.1061/(ASCE)EE.1943-7870.0000698
- International Union for Conservation of Nature. (n.d.). IUCN, International Union for Conservation of Nature. Retrieved July 19, 2018, from IUCN, International Union for Conservation of Nature: https://www.iucn.org/
- Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S., & Leng, X. (2017). Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific reports, 8028. doi:10.1038/s41598-017-07831-3
- Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., et al. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 997-1009. doi:10.1016/j.scitotenv.2017.08.077
- Kim, L. H., Kang, H. M., & Bae, W. (2010). Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 97-104. doi: 10.5004/dwt.2010.1901
- Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 8-17. doi:10.1016/j.geoderma.2013.07.004
- Li, D., Wan, J., Ma, Y., Wang, Y., Huang, M., & Chen, Y. (2015). Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. PloS ONE. doi:10.1371/journal.pone.0118776
- Li, H. (2015). Green Infrastructure for Highway Stormwater Management: Field Investigation for Future Design, Maintenance, and Management Needs. Journal of Infrastructure Systems, 05015001. doi:10.1061/(ASCE)IS.1943-555X.0000248
- Li, Y. C., Zhang, D. Q., & Wang, M. (2017). Performance Evaluation of a Full-Scale Constructed Wetland for Treating Stormwater Runoff. CLEAN-Soil, Air, Water, 1600740. doi:10.1002/clen.201600740
- Liu, J., Sample, D. J., Bell, C., & Yuntao, G. (2014). Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water, 1069-1099. doi: 10.3390/w6041069
- Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Critical reviews in environmental science and technology, 1315-1348. doi:10.1080/10643389.2011.644222
- Ma, Y., Egodawatta, P., McGree, P., Liu, J., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 764-772. doi:10.1016/j.scitotenv.2016.03.067
- Mangangka, I. R., Liu, A., Egodawatta, P., & Goonetilleke, A. (2015). Sectional analysis of stormwater treatment performance of a constructed wetland. Ecological Engineering, 172-179. doi:10.1016/j.ecoleng.2015.01.028
- Maniquiz, M. C. (2012). Low Impact Development (LID) Technology for Urban Stormwater Runoff Treatment - Monitoring, Performance, and Design. Cheonan: Kongju National University.
- Maniquiz-Redillas, M. C., & Kim, L.-H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology, 2265-2272. doi:10.1080/09593330.2016.1147610
- Mercado, J. M., Maniquiz-Redillas, M. C., & Kim, L.-H. (2015). Laboratory study on the clogging potential of a hybrid best management practice. Desalination and Water Treatment, 3126-3133. doi:10.1080/19443994.2014.922287
- Roseen, R. M., Ballestero, T. P., Houle, J. J., & Pedro, A. (2009). Seasonal Perofirmance Variations for Storm-Water Management Systems in Cold Climate Conditions. Journal of Environmental Engineering, 128-137. doi:10.1061/(ASCE)0733-9372(2009)135:3(128)
- Segismundo, E. Q., Lee, B.-S., Kim, L.-H., & Koo, B.-H. (2016). Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter. Journal of Korean Society on Water Environment, 36-45. doi:10.15681/KSWE.2016.32.1.36
- Sidhu, J. P., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., et al. (2013). Sewage pollution in urban stormwater runoff as evident from thewidespread presence of multiple microbial and chemical source tracking markers. Science of Total Environment, 488-496. doi:10.1016/j.scitotenv.2013.06.020
- Sun, H., Wang, Z., Gao, P., & Peng, L. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta physiologiae plantarum, 355-364. doi:10.1007/s11738-012-1078-8
- USEPA. (1999). Stormwater Technology Fact Sheet: Infiltration Trench. Washington, D.C.: USEPA.
- Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 582-592. doi: 10.1016/j.ecoleng.2013.06.023
- Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2016). Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review. Water Research, 582-596. doi:10.1016/j.watres.2016.06.013
- Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., et al. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 594-601. doi:10.1016/j.biortech.2014.10.068
- Yiping, G., & Gao, T. (2016). Analytical Equations for Estimating the Total Runoff Reduction Efficiency of Infiltration Trenches. Journal of Sustainable Water in the Built Environment, 06016001. doi: 10.1061/JSWBAY.0000809
- Yuan, Q., & Kim, Y. (2018). Analysis of the particulate matters in the vertical-flow woodchip wetland. Journal of Wetlands Research, 145-154. doi: 10.17663/JWR.2018.20.2.145
- Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., & Goharian, E. (2014). Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. Journal of Irrigation and Drainage Engineering, 04014043. doi: 10.1061/(ASCE)IR.1943-4774.0000770
- Zhao, Y., Liu, B., Zhang, W., Weijing, K., Hu, C., & An, S. (2009). Comparison of the Treatment Performances of High-strength Wastewater in Vertical Subsurface Flow Constructed Wetlands Planted with Acorus calamus and Lythrum salicaria. Journal of Health Science, 757-766. doi: 10.1248/jhs.55.757
- Zhu, H., Yan, B., Xu, Y., Jiunian, G., & Shuyuan, L. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 58-63. doi: 10.1016/j.ecoleng.2013.12.018