DOI QR코드

DOI QR Code

Acceleration Technique in Particle-based Collision Detection Using Cone Area Based Dynamic Collision Regions

부채꼴 영역 기반의 동적인 충돌 영역을 이용한 입자 기반 충돌 검사의 고속화 기법

  • Received : 2019.03.04
  • Accepted : 2019.05.15
  • Published : 2019.06.01

Abstract

In this paper, we propose a framework that can perform acceleration collision detection efficiently by using a cone based collision area in a particle-based system which requires collision detection with many objects. Three conditions determine particle and cone-based collision regions: 1) If there is a cone position within the radius of the adjacent particle, 2) In the case where the position of the adjacent particle exists in the cone area, 3) When adjacent particles exist between two vectors forming a cone area. As a result, it is defined that when the above conditions are all satisfied, the particle and the region of a cone have collided. In this paper, we automatically update the area of the cone, which is the collision detection area, according to the particle movement. Determine the direction and length of the cone based on the position and velocity of the particle to calculate the dynamic change of the cone. Collision detection is performed quickly using only the particles in the finally calculated area. The acceleration method proposed in this paper is simple to implement because it is executed with a closed form equation instead of explicitly creating the tree data structure, and collision inspection performance is improved in all results.

본 논문에서는 많은 개체와의 충돌 검사를 요구하는 입자 기반 시스템에서 부채꼴 영역의 동적인 변화를 이용하여 효율적으로 충돌 검사를 가속화시킬 수 있는 프레임워크를 제안한다. 입자와 부채꼴 기반의 충돌 영역은 다음 세 가지 조건에 의해 결정된다: 1) 인접 입자의 반경 내에 부채꼴의 위치가 존재하는 경우, 2) 부채꼴 영역 내에 인접 입자의 위치가 존재하는 경우, 3) 부채꼴 영역을 형성하는 두 벡터 사이에 인접 입자가 존재하는 경우. 결과적으로 위 조건들을 모두 만족했을 때 입자와 부채꼴 영역은 충돌되었다고 정의한다. 본 논문에서는 입자의 움직임에 따라 충돌 검사 범위인 부채꼴의 영역을 자동으로 업데이트 한다. 부채꼴 영역의 동적인 변화를 계산하기 위해 입자의 위치와 속도를 기반으로 부채꼴의 방향, 길이, 각도를 조절한다. 최종적으로 계산된 부채꼴 영역 내에 있는 입자들만을 이용하여 충돌 검사를 빠르게 수행한다. 본 연구에서 제안하는 가속화 방법은 트리와 같은 자료구조를 명시적으로 만들지 않고, 닫힌 형태 방정식으로 실행되기 때문에 간단하게 구현되며 모든 결과에서 충돌 검사 성능이 개선되었다.

Keywords

References

  1. S. Premzoe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, "Particle-based simulation of fluids," in Computer Graphics Forum, vol. 22, no. 3, 2003, pp. 401-410. https://doi.org/10.1111/1467-8659.00687
  2. N. Sakamoto, J. Nonaka, K. Koyamada, and S. Tanaka, "Particle-based volume rendering," in Visualization, 2007. APVIS'07. 2007 6th International Asia-Pacific Symposium on, 2007, pp. 129-132.
  3. B. J. Lucchesi, "A parallel linear octree collision detection algorithm," Ph.D. dissertation, University of Nevada, Reno, 2002.
  4. D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, "Interactive kd tree gpu raytracing," in Proceedings of the 2007 symposium on Interactive 3D graphics and games, 2007, pp. 167-174.
  5. S. Lefebvre and H. Hoppe, "Perfect spatial hashing," in ACM Transactions on Graphics (TOG), vol. 25, no. 3, 2006, pp. 579-588. https://doi.org/10.1145/1141911.1141926
  6. J.-P. Heo, J.-K. Seong, D. Kim, M. A. Otaduy, J.-M. Hong, M. Tang, and S.-E. Yoon, "Fastcd: fracturing-aware stable collision detection," in Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010, pp. 149-158.
  7. T. Larsson and T. Akenine-Moller, "A dynamic bounding volume hierarchy for generalized collision detection," Computers & Graphics, vol. 30, no. 3, pp. 450-459, 2006. https://doi.org/10.1016/j.cag.2006.02.011
  8. W. Fan, B. Wang, J.-C. Paul, and J. Sun, "An octree-based proxy for collision detection in large-scale particle systems," Science China Information Sciences, vol. 56, no. 1, pp. 1-10, 2013.
  9. T. Foley and J. Sugerman, "Kd-tree acceleration structures for a gpu raytracer," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2005, pp. 15-22.
  10. S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek, "Stackless kd-tree traversal for high performance gpu ray tracing," in Computer Graphics Forum, vol. 26, no. 3, 2007, pp. 415-424. https://doi.org/10.1111/j.1467-8659.2007.01064.x
  11. S. Gottschalk, M. C. Lin, and D. Manocha, "Obbtree: A hierarchical structure for rapid interference detection," in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996, pp. 171-180.
  12. W. Zhao, C.-S. Chen, and L.-J. Li, "Parallel collision detection algorithm based on obb tree and mapreduce," in International Conference on Technologies for E-Learning and Digital Entertainment, 2010, pp. 610-620.
  13. M. Teschner, B. Heidelberger, M. Muller, D. Pomerantes, and M. H. Gross, "Optimized spatial hashing for collision detection of deformable objects," in VMV: Proceedings of the Vision, Modeling, Visualization, vol. 3, 2003, pp. 47-54.
  14. D. Knott and D. K. Pai, "Cinder: Collision and interference detection in real-time using graphics hardware," in Graphics Interface, 2003.
  15. N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, "Cullide: Interactive collision detection between complex models in large environments using graphics hardware," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Eurographics Association, 2003, pp. 25-32.
  16. A. Gress and G. Zachmann, "Object-space interference detection on programmable graphics hardware," in SIAM Conf. on Geometric Design and Computing, 2003, pp. 311-328.
  17. N. K. Govindaraju, M. C. Lin, and D. Manocha, "Fast and reliable collision culling using graphics hardware," IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 2, pp. 143-154, 2006. https://doi.org/10.1109/TVCG.2006.29
  18. C. Sigg, R. Peikert, and M. Gross, "Signed distance transform using graphics hardware," in Proceedings of the 14th IEEE Visualization 2003 (VIS'03). IEEE Computer Society, 2003, p. 12.
  19. P. Kipfer, M. Segal, and R. Westermann, "Uberflow: a gpubased particle engine," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. ACM, 2004, pp. 115-122.
  20. A. Kolb, L. Latta, and C. Rezk-Salama, "Hardware-based simulation and collision detection for large particle systems," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2004, pp. 123-131.
  21. K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver, "Fast computation of generalized voronoi diagrams using graphics hardware," in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, 1999, pp. 277-286.
  22. W. Chen, H. Wan, H. Zhang, H. Bao, and Q. Peng, "Interactive collision detection for complex and deformable models using programmable graphics hardware," in Proceedings of the ACM symposium on Virtual reality software and technology, 2004, pp. 10-15.
  23. N. K. Govindaraju, M. C. Lin, and D. Manocha, "Quick-cullide: Fast inter-and intra-object collision culling using graphics hardware," in Virtual Reality, 2005. Proceedings. VR 2005. IEEE, 2005, pp. 59-66.
  24. W. S.-K. Wong and G. Baciu, "Gpu-based intrinsic collision detection for deformable surfaces," Computer Animation and Virtual Worlds, vol. 16, no. 3-4, pp. 153-161, 2005. https://doi.org/10.1002/cav.104
  25. W. S.-K. Wong and G. Baciu, "Robust continuous collision detection for interactive deformable surfaces," Computer Animation and Virtual Worlds, vol. 18, no. 3, pp. 179-192, 2007. https://doi.org/10.1002/cav.173