DOI QR코드

DOI QR Code

Application of Passive Sampling in Marine Environment: 2. Modified Method for Shortening of Deployment Time in a Field

해양환경에서의 수동형채집기(Passive Sampler)의 활용: 2. 현장노출시간 단축을 위한 개선법

  • JANG, YU LEE (Department of Ocean System Engineering, Gyeongsang National University) ;
  • LEE, HYO JIN (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • JEONG, HAE JIN (Department of Ocean System Engineering, Gyeongsang National University) ;
  • KIM, GI BEUM (Department of Ocean System Engineering, Gyeongsang National University)
  • 장유리 (경상대학교 해양시스템공학과) ;
  • 이효진 (경상대학교 해양환경공학과) ;
  • 정해진 (경상대학교 해양시스템공학과) ;
  • 김기범 (경상대학교 해양시스템공학과)
  • Received : 2018.12.20
  • Accepted : 2019.05.03
  • Published : 2019.05.31

Abstract

A passive sampler is one of the promising methods to easily and more accurately predict the free dissolved and bioavailable concentration ($C_{free}$) in seawater or pore water in sediments. In Europe and the United States, the use of passive samplers has been highly encouraged for more accurate marine environmental risk assessment. However, long deployment time in the field causes problems such as biofouling of the samplers, so there are few studies using passive samplers in Korea. Therefore, we review the principle and basic characteristics of the passive sampler for persistent organic pollutants, and introduce various improvement cases for the field applications of the passive sampler.

수동형채집기(passive sampler)는 해수나 퇴적물 내 공극수에서의 자유용존상 농도 (freely dissolved and bioavailable concentration, $C_{free}$)를 쉽고 보다 정확히 예측할 수 있는 유망한 방법 중 하나이다. 유럽이나 미국에서는 보다 정확한 위해도 평가를 위해 해양환경 모니터링에 수동형채집기를 적극적으로 사용하는 추세이지만, 현장 적용 시 노출시간이 길어짐에 따라 수동형채집기의 생물부착으로 인한 문제점으로 국내에서의 활용도는 매우 낮다. 따라서 본 연구에서는 난분해성 유기오염물질을 대상으로 하는 수동형채집기의 원리 및 기본적인 특징을 파악하고, 수동형채집기의 현장 적용을 위한 다양한 개선 사례를 조사함으로써 국내에서의 수동형채집기의 활용도를 높이기 위한 방안을 제시하였다.

Keywords

GHOHBG_2019_v24n2_249_f0001.png 이미지

Fig. 1. Schematic processing of Cfree uptake by passive sampler (a) and modes of passive sampler operation (kinetic and equilibrium) (b).

GHOHBG_2019_v24n2_249_f0002.png 이미지

Fig. 2. Number of publications by type of passive samplers applied to the field excluding atmosphere from Scopus.

GHOHBG_2019_v24n2_249_f0003.png 이미지

Fig. 3. Shapes of the passive sampler (a: SPMDs figure from NOAA, b: LDPE sheet, and c: SPME).

GHOHBG_2019_v24n2_249_f0004.png 이미지

Fig. 4. Release of [2H10]anthracene from SPMDs exposed at different linear flow velocities: 0.06 cm/s (●, dotted lines), 0.28 cm/s (▲, dashed lines), and 1.14 cm/s (□, solid lines) (Adapted from Vrana and Schüürmann, 2002, Environ. Sci. Technol., 36: 290-296, with permission of American Chemical Society).

GHOHBG_2019_v24n2_249_f0005.png 이미지

Fig. 5. Comparisons of DDx porewater concentrations found using EqP (OC) (=Cs/focKoc), EqP (OC+BC) (=Cs/(focKoc+fbcKbcCw 0.7)), in situ, and Tumbling (ex situ) (Adapted from Borrelli et al., 2018, Chemosphere, 200: 227-236, with permission of Elsevier).

GHOHBG_2019_v24n2_249_f0006.png 이미지

Fig. 6. Passive samplers in seawater without cage before (a) and after (b), and with stainless cage before (c) and after (d) deployment.

Table 1. Field deployment time for diverse passive sampler in marine environment

GHOHBG_2019_v24n2_249_t0001.png 이미지

References

  1. Accardi-Dey, A.M. and P.M. Gschwend, 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol., 36: 21-29. https://doi.org/10.1021/es010953c
  2. Adams, R.G., R. Lohmann, L.A. Fernandez, J.K. MacFarlane and P.M. Gschwend, 2007. Polyethylene Devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ. Sci. Technol., 41: 1317-1323. https://doi.org/10.1021/es0621593
  3. Ahrens, L., A. Daneshvar, A.E. Lau and J. Kreuger, 2015. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A., 1405: 1-11. https://doi.org/10.1016/j.chroma.2015.05.044
  4. Allan, I.J., H.C. Nilsson, I. Tjensvoll, C. Bradshaw and K. Naes, 2011. Mobile passive samplers: Concept for a novel mode of exposure. Environ. Pollut., 159: 2393-2397. https://doi.org/10.1016/j.envpol.2011.06.039
  5. Allan, I.J., A. Ruus, M.T. Schaanning, K.J. Macrae and K. Naes, 2012. Measuring nonpolar organic contaminant partitioning in three Norwegian sediments using polyethylene passive samplers. Sci. Total Environ., 423: 125-131. https://doi.org/10.1016/j.scitotenv.2012.02.027
  6. Allan, I.J., C. Harman, S.B. Ranneklev, K.V. Thomas and M. Grung, 2013. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ. Toxicol. Chem., 32: 1718-1726. https://doi.org/10.1002/etc.2260
  7. An, J.G., W.J. Shim, S.Y. Ha and U.H. Kim, 2014. Determination of petroleum aromatic hydrocarbons in seawater using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. J. Korean Soc. Mar. Environ. Energy, 17: 27-35. https://doi.org/10.7846/JKOSMEE.2014.17.1.27
  8. Anderson, K.A., D. Sethajintanin, G. Sower and L. Quarles, 2008. Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environ. Sci. Technol., 42: 4486-4493. https://doi.org/10.1021/es702657n
  9. Apell, J.N. and P.M. Gschwend, 2014. Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds. Environ. Sci. Technol., 48: 10301-10307. https://doi.org/10.1021/es502694g
  10. Apell, J.N., A.P. Tcaciuc and P.M. Gschwend, 2016a. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments. Integr. Environ. Assess. Manag., 12: 486-492. https://doi.org/10.1002/ieam.1697
  11. Apell, J.N. and P.M. Gschwend, 2016b. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data. Environ. Pollut., 218: 95-101. https://doi.org/10.1016/j.envpol.2016.08.023
  12. Bao, L.J., S.P. Xu, Y. Liang and E.Y. Zeng, 2012. Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environ. Toxicol. Chem., 31: 1012-1018. https://doi.org/10.1002/etc.1788
  13. Bao, L.J. and E.Y. Zeng, 2014. Field application of passive sampling techniques for sensing hydrophobic organic contaminants. Trends Environ. Anal. Chem., 1: 19-24. https://doi.org/10.1016/j.teac.2013.11.003
  14. Booij, K., F. Smedes and E.M. Van Weerle, 2002a. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46: 1157-1161. https://doi.org/10.1016/S0045-6535(01)00200-4
  15. Booij, K., B.N. Zegers and J.P. Boon, 2002b. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accmulation in SPMDs and blue mussels. Chemosphere, 46: 683-688. https://doi.org/10.1016/S0045-6535(01)00232-6
  16. Booij, K., H.E. Hofmans, C.V. Fischer and E.M. Van Weerlee, 2003. Temperature-dependent uptake rate of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol., 37: 361-366. https://doi.org/10.1021/es025739i
  17. Booij, K., R. van Bommel, K.C. Jones and J.L. Barber, 2007. Air-water distribution of hexachlorobenzene and 4,4′ -DDE along a North-South Atlantic transect. Mar. Pollut. Bull., 54: 814-819. https://doi.org/10.1016/j.marpolbul.2006.12.012
  18. Booij, K., C.D. Robinson, R.M. Burgess, P. Mayer, C.A. Roberts, L. Ahrens, I.J. Allan, J. Brant, L. Jones, U.R. Kraus, M.M. Larsen, P. Lepom, J. Petersen, D. Profrock, P. Roose, S. Schafer, F. Smedes, C. Tixier, K. Vorkamp and P. Whitehouse, 2016. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol., 50: 3-17. https://doi.org/10.1021/acs.est.5b04050
  19. Borrelli, R., A.P. Tcaciuc, I. Verginelli, R. Baciocchi, L. Guzzella, P. Cesti, L. Zaninetta and P.M. Gschwend, 2018. Performance of passive sampling with low-density polyethylene membranes for the estimation of freely dissolved DDx concentrations in lake environments. Chemosphere, 200: 227-236. https://doi.org/10.1016/j.chemosphere.2018.02.077
  20. Choi S.D, S.Y. Beak and Y.S. Chang, 2009. Passive air sampling of persistent organic pollutants in Korea. Toxicol. Environ. Health. Sci. 1: 75-82. https://doi.org/10.1007/BF03216467
  21. Cornelissen, G., K. Wiberg, D. Broman, H.P.H. Arp, Y. Persson, K. Sundqvist and P. Jonsson, 2008a. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ. Sci. Technol., 42: 8733-8739. https://doi.org/10.1021/es8018379
  22. Cornelissen, G., A. Pettersen, D. Broman, P. Mayer and G.D. Breedveld, 2008b. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ. Toxicol. Chem., 27: 499-508. https://doi.org/10.1897/07-253.1
  23. Cornelissen, G., G. Okkenhaug, G.D. Breedveld and J.E. Sorlie, 2009. Transport of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in a landfill: A novel equilibrium passive sampler to determine free and total dissolved concentrations in leachate water. J. Hydrol., 369: 253-259. https://doi.org/10.1016/j.jhydrol.2009.02.017
  24. Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas and P.R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem., 10: 1541-1583. https://doi.org/10.1002/etc.5620101203
  25. Endo, S., Y. Yabuki and S. Tanaka, 2017. Comparing polyethylene and polyoxymethylene passive samplers for measuring sediment porewater concentrations of polychlorinated biphenyls: Mutual validation and possible correction by polymer-polymer partition experiment. Chemosphere, 184: 358-365. https://doi.org/10.1016/j.chemosphere.2017.06.005
  26. Fernandez, L.A., W. Lao, K.A. Maruya, C. White and R.M. Burgess, 2012. Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes Shelf Superfund site. Environ. Sci. Technol., 46: 11937-11947. https://doi.org/10.1021/es302139y
  27. Fernandez, L.A., W. Lao, K.A. Maruya and R.M. Burgess, 2014. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund Site using polymeric passive samplers. Environ. Sci. Technol., 48: 3925-3934 https://doi.org/10.1021/es404475c
  28. Ghosh, U., S.K. Driscoll, R.M. Burgess, M.T.O. Jonker, D. Reible, F. Gobas, Y. Choi, S.E. Apitz, K.A. Maruya, W.R. Gala, M. Mortimer and C. Beegan, 2014. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manag., 10: 210-223. https://doi.org/10.1002/ieam.1507
  29. Gschwend, P.M., J.K. MacFarlane, D.D. Relble, X. Lu, S.B. Hawthorne, D.V. Nakles and T. Thompson, 2011. Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ. Toxicol. Chem., 30: 1288-1296. https://doi.org/10.1002/etc.510
  30. Gustafsson, O., F. Haghseta, C. Chan, J. MacFarlane and P.M. Gschwend, 1996. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ. Sci. Technol., 31: 203-209. https://doi.org/10.1021/es960317s
  31. Hawthorne, S.B., M.T.O. Jonker, S.A. van der Heijden, C.B. Grabanski, N.A. Azzolina and D.J. Miller, 2011. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem., 83: 6754-6761. https://doi.org/10.1021/ac201411v
  32. Heo, J. and G. Lee, 2014. Field-measured uptake rates of PCDDs/Fs and dl-PCBs using PUF-disk passive air samplers in Gyeonggi-do, South Korea. Sci. Total Environ., 491-492: 42-50. https://doi.org/10.1016/j.scitotenv.2014.03.073
  33. Huckins, J.N., M.W. Tubergen and G.K. Manuweera, 1990. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20: 533-552. https://doi.org/10.1016/0045-6535(90)90110-F
  34. Huckins, J.N., J.D. Petty, C.E. Orazio, J.A. Lebo, R.C. Clark, V.L. Gibson, W.R. Gala and K.R. Echols, 1999. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water. Environ. Sci. Technol., 33: 3918-3923. https://doi.org/10.1021/es990440u
  35. Huckins, J.N., J.D. Petty, J.A. Lebo, F.V. Almeida, K. Booij, D.A. Alvarez, W.L. Cranor, R.C. Clark and B.B. Mogensen, 2002. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membreane devices. Environ. Sci. Technol., 36: 85-91. https://doi.org/10.1021/es010991w
  36. Huckins, J.N., J.D. Petty and K. Booij, 2006. Monitors of organic chemicals in the environment. In: Semipermeable membrane devices. Springer, New York.
  37. ITRC (Interstate Technology & Regulatory Council), 2011. Incorporating bioavailability considerations into the evaluation of contaminated sediment sites, 162 pp.
  38. Jahnke, A., P. Mayer and M.S. McLachlan, 2012. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ. Sci. Technol., 46: 10114-10122. https://doi.org/10.1021/es302330v
  39. Jalalizadeh, M. and U. Ghosh, 2016. In situ passive sampling of sediment porewater enhanced by periodic vibration. Environ. Sci. Technol., 50: 8741-8749. https://doi.org/10.1021/acs.est.6b00531
  40. Jonker, M.T.O. and A.A. Koelmans, 2001. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol., 35: 3742-3748. https://doi.org/10.1021/es0100470
  41. Jonker, M.T.O. and A.A. Koelmans, 2002. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: Solvent evaluation and implications for sorption mechanism. Environ. Sci. Technol., 36: 4107-4113. https://doi.org/10.1021/es0103290
  42. Jonker, M.T.O., S.A. van der Heijden, M. Kotte and F. Smedes, 2015. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol., 49: 6791-6799. https://doi.org/10.1021/acs.est.5b00286
  43. Jonker, M.T.O., S.A. van der Heijden, D. Adelman, J.N. Apell, R.M. Burgess, Y. Choi, L.A. Fernandez, G.M. Flavetta, U. Ghosh, P.M. Gschwend, S.E. Hale, M. Jalalizadeh, M. Khairy, M.A. Lampi, W. Lao, R. Lohmann, M.J. Lydy, K.A. Maruya, S.A. Nutile, A.M.P. Oen, M.I. Rakowska, D. Reible, T.P. Rusina, F. Smedes and Y. Wu, 2018. Advancing the use of passive sampling in risk assessment and management of sediments contaminated with hydrophobic organic chemicals: Results of an international ex situ passive sampling interlaboratory comparison. Environ. Sci. Technol., 52: 3574-3582. https://doi.org/10.1021/acs.est.7b05752
  44. Joyce, A.S., M.S. Pirogovsky, R.G. Adams, W. Lao, D. Tsukada, C.L. Cash, J.F. Haw and K.A. Maruya, 2015. Using performance reference compound-corrected polyethylene passive samplers and caged bivalves to measure hydrophobic contaminants of concern in urban coastal seawaters. Chemosphere, 127: 10-17. https://doi.org/10.1016/j.chemosphere.2014.12.067
  45. Kim, U.J., H.Y. Kim, D. Alvarez, I.S. Lee and J.E. Oh, 2014. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples. Sci. Total Environ., 470-471: 1537-1544. https://doi.org/10.1016/j.scitotenv.2013.06.033
  46. Kim, U.J., C.D. Seo, T.H. Im and J.E. Oh, 2015. Application assessment of passive sampling to monitor polybrominated diphenyl ethers in water environment as alternative sampling method for grab sampling. J. Korean Soc. Environ. Eng., 37: 45-51. https://doi.org/10.4491/KSEE.2015.37.1.45
  47. Kim, S.J., H.O. Kwon, M.I. Lee, Y. Seo and S.D. Choi, 2019. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res., 26: 5831-5841. https://doi.org/10.1007/s11356-018-4032-5
  48. Lao, W., Y. Hong, D. Tsukada, K.A. Maruya and J. Gan, 2016. A new film-based passive sampler for moderately hydrophobic organic compounds. Environ. Sci. Technol., 50: 13470-13476. https://doi.org/10.1021/acs.est.6b04750
  49. Lao, W., K.A. Maruya and D. Tsukada, 2019. An exponential model based new approach for correcting aqueous concentrations of hydrophobic organic chemicals measured by polyethylene passive samplers. Sci. Total Environ., 646: 11-18. https://doi.org/10.1016/j.scitotenv.2018.07.192
  50. Lefkovitz, L., E. Crecelius and N. McElroy, 1996. Poster presented at the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, 17-21 November, Washington. DC, USA.
  51. Liu, H.H., L.J. Bao, K. Zhang, S.P. Xu, F.C. Wu and E.Y. Zeng, 2013. Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals. Environ. Sci. Technol., 47: 9866-9873. https://doi.org/10.1021/es401180y
  52. Liu, H.H., L.J. Bao and E.Y. Zeng, 2014. Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Anal. Chem., 54: 56-64. https://doi.org/10.1016/j.trac.2013.11.005
  53. Lohmann, R., J.K. Macfarlane and P.M. Gschwend, 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ. Sci. Technol., 39: 141-148. https://doi.org/10.1021/es049424+
  54. Lohmann, R., 2012. Critical review of low-density polyethylene's partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ. Sci. Technol., 46: 606-618. https://doi.org/10.1021/es202702y
  55. Lohmann, R., K. Booij, F. Smedes and B. Vrana, 2012a. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environ. Sci. Pollut. Res., 19: 1885-1895. https://doi.org/10.1007/s11356-012-0748-9
  56. Lohmann, R., J. Klanova, P. Kukucka, S. Yonis and K. Bollinger, 2012b. PCBs and OCPs on a West-to-East transect: The importance of major current and net volatilization for PCBs in the Atlantic Ocean. Environ. Sci. Technol., 46: 10471-10479. https://doi.org/10.1021/es203459e
  57. Lu, X., A. Skwarski, B. Drake and D.D. Reible, 2011. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers. Environ. Toxicol. Chem., 30: 1109-1116. https://doi.org/10.1002/etc.495
  58. Martin, A., C. Margoum, J. Randon and M. Coquery, 2016. Silicone rubber selection for passive sampling of pesticides in water. Talanta, 160: 306-313. https://doi.org/10.1016/j.talanta.2016.07.019
  59. Martinez, A., C. O'Sullivan, D. Reible and K.C. Hornbuckle, 2013. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment. Environ. Pollut., 182: 357-363. https://doi.org/10.1016/j.envpol.2013.07.015
  60. Maruya, K.A., W. Lao, D. Tsukada and D.W. Diehl, 2015. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Chemosphere, 137: 192-197. https://doi.org/10.1016/j.chemosphere.2015.07.042
  61. Mayer, P., W.H.J. Vaes, F. Wijnker, K.C.H.M. Legierse, R.H. Kraaij, J. Tolls and J.L.M. Hermens, 2000. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol., 34: 5177-5183. https://doi.org/10.1021/es001179g
  62. Mayer, P., T.F. Parkerton, R.G. Adams, J.G. Cargill, J. Gan, T. Gouin, P.M. Gschwend, S.B. Hawthorne, P. Helm, G. Witt, J. You and B.I. Escher, 2014. Passive sampling in contaminated sediment assessment: Scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag., 10: 197-209. https://doi.org/10.1002/ieam.1508
  63. McDonough, K.M., N.A. Azzolina, S.B. Hawthorne, D.V. Nakles and E.F. Neuhauser, 2010. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella zateca. Environ. Toxicol. Chem., 29: 1545-1550. https://doi.org/10.1002/etc.182
  64. McDonough, C.A., A.O. De Silva, C. Sun, A. Cabrerizo, D. Adelman, T. Soltwedel, E. Bauerfeind, D.C.G. Muir and R. Lohmann, 2018. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: arctic surface water distributions and net transport through fram strait. Environ. Sci. Technol., 52: 6208-6216. https://doi.org/10.1021/acs.est.8b01127
  65. Miege, C., N. Mazzella, I. Allan, V. Dulio, F. Smedes, C. Tixier, E. Vermeirssen, J. Brant, S. O'Toole, H. Budzinski, J.P. Ghestem, P.F. Staub, S. Lardy-Fontan, J.L. Gonzalez, M. Coquery and B. Vrana. 2015. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment-Achievements to date and perspectives. Trends Environ. Anal. Chem., 8: 20-26. https://doi.org/10.1016/j.teac.2015.07.001
  66. Mills, G.A., G.R. Fones, K. Booij and R. Greenwood, 2011. Passive sampling technologies. In Chemical Marine Monitoring: Policy Framework and Analytical Trends; Quevauviller, P., Roose, P., Verreet, G., Eds.; John Wiley and Sons: Chichester. 397-432 pp.
  67. Monteyne, E., P. Roose and C.R. Janssen, 2013. Application of a silicone rubber passive sampling technique for monitoring PAHs and PCBs at three Belgian coastal harbours. Chemosphere, 91: 390-398. https://doi.org/10.1016/j.chemosphere.2012.11.074
  68. Moschet, C., E.L.M. Vermeirssen, R. Seiz, H. Pfefferli and J. Hollender, 2014. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res., 66: 411-422. https://doi.org/10.1016/j.watres.2014.08.032
  69. Muijs, B. and M.T.O. Jonker, 2012. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms? Environ. Sci. Technol., 46: 937-944. https://doi.org/10.1021/es202951w
  70. Muller, J.F., K. Manomanii, M.R. Mortimer and M.S. McLachlan, 2001. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius J. Anal. Chem., 371: 816-822. https://doi.org/10.1007/s002160101025
  71. NOAA (National Oceanic and Atmospheric Administration), https://oceanexplorer.noaa.gov/technology/tools/spmds/spmds.html, Semipermeable Membrane Devices.
  72. Ossiander, L., F. Reichenberg, M.S. McLachlan and P. Mayer, 2008. Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere, 71: 1502-1510. https://doi.org/10.1016/j.chemosphere.2007.11.060
  73. Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013a. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ. Toxicol. Chem., 32: 2182-2189. https://doi.org/10.1002/etc.2321
  74. Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013b. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants. Environ. Toxicol. Chem., 32: 2190-2196. https://doi.org/10.1002/etc.2248
  75. Pintado-Herrera, M.G., P.A. Lara-Martin, E. Gonzalez-Mazo and I.J. Allan, 2016. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants. Environ. Toxicol. Chem., 35: 2162-2172. https://doi.org/10.1002/etc.3390
  76. Prest, H.F., L.A. Jacobson, J.N. Huckins, 1995. Passive sampling of water and coastal air via semipermeable membrane devices. Chemosphere, 30: 1351-1361. https://doi.org/10.1016/0045-6535(95)00027-6
  77. Prest, H.F., W.M. Jarman, S.A. Burns, T. Weismuller, M. Martin and J.N. Huckins, 1992. Passive water sampling via semipermeable membrane devices (SPMDs) in concert with bivalves in the Sacramento/San Joaquin river delta. Chemosphere, 25: 1811-1823. https://doi.org/10.1016/0045-6535(92)90021-I
  78. Prokes, R., B. Vrana and J. Klanova, 2012. Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlin district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environ. Pollut., 166: 157-166. https://doi.org/10.1016/j.envpol.2012.02.022
  79. Qin, Z., L. Bragg, G. Ouyang, V.H. Niri and J. Pawliszyn, 2009. Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water, J. Chromatogr. A., 1216: 6979-6985. https://doi.org/10.1016/j.chroma.2009.08.052
  80. Rantalainen, A.L., W.J. Cretney and M.G. Ikonomou, 2000. Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment. Chemosphere, 40: 147-158. https://doi.org/10.1016/S0045-6535(99)00220-9
  81. Reitsma, P.J., D. Adelman and R. Lohmann, 2013. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol., 47: 10429-10437. https://doi.org/10.1021/es402528q
  82. Richardson, B.J., P.K.S. Lam, G.J. Zheng, K.E. McClellan and S.B. De Luca-Abbott, 2002. Biofouling confounds the uptake of trace organic contaminants by semi-permeable membrane devices (SPMDs). Mar. Pollut. Bull., 44: 1372-1379. https://doi.org/10.1016/S0025-326X(02)00263-1
  83. Rusina, T.P., F. Smedes, M. Koblizkova and J. Klanova, 2010. Calibration of silicone rubber passive samplers: experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol., 44: 362-367. https://doi.org/10.1021/es900938r
  84. Sacks, V.P. and R. Lohmann, 2012. Freely dissolved PBDEs in water and porewater of an urban estuary. Environ. Pollut., 162: 287-293. https://doi.org/10.1016/j.envpol.2011.11.028
  85. Smedes, F., 1994. Sampling and partition of neutral organic contaminants in surface waters with regard to legislation, environmental quality and flux estimations. Int. J. Environ. Anal. Chem., 57: 215-29. https://doi.org/10.1080/03067319408027428
  86. Smedes, F., 2007. Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels. In passive sampling techniques in environmental monitoring, Ch. 19. Ed. by R. Greenwood, R., Mills, G.A., Vrana, B., Elsevier, Amsterdam.
  87. UNEP (United Nations Environment Programme), 2001. Final act of the plenipotentiaries on the Stockholm Convention on persistent organic pollutants; United Nations Environment Program Chemicals.
  88. UNEP (United Nations Environment Programme), 2004. Guidance for a global monitoring programme for persistent organic pollutants, 1st ed.; United nations environment programme chemicals.
  89. USEPA (United States Environmental Protection Agency), 2012. Guidelines for using passive samplers to monitor organic contaminants at superfund sediment sites, 32 pp.
  90. USEPA (United States Environmental Protection Agency), 2017. Laboratory, field, and analytical procedures for using passive sampling in the evaluation of contaminated sediments: User's manual, 153 pp.
  91. van der Wal, L., T. Jager, R.H.L.J. Fleuren, A. Barendregt, T.L. Sinnige, C.A.M. van Gestel and J.L.M. Hermens, 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol., 38: 4842-4848. https://doi.org/10.1021/es035318g
  92. Vrana, B. and G. Schuurmann, 2002. Calibrationg the uptake kinetics of semipermeable membrane devices in water: Impact of hydrodynamics. Environ. Sci. Technol., 36: 290-296. https://doi.org/10.1021/es0100625
  93. Vrana, B., I.j. Allan, R. Greenwood, G.A. Mills, E. Dominiak, K. Svensson, J. Knutsson and G. Morrison, 2005. Passive sampling techniques for monitoring pollutants in water. Trends Anal. Chem., 24: 845-868. https://doi.org/10.1016/j.trac.2005.06.006
  94. Vrana, B., F. Smedes, T. Rusina, K. Okonski, I. Allan, M. Grung, K. Hilscherova, J. Novak, P. Tarabek and J. Slobodnik, 2015. 29 passive sampling: chemical analysis and toxicological profiling. 304-315 pp.
  95. Witt, G., S.C. Lang, D. Ulmann, G. Schaffrath, D. Schulz-Bull and P. Mayer, 2013. Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ. Sci. Technol., 47: 7830-7839. https://doi.org/10.1021/es400395t
  96. Xu, C., J. Wang, J. Richards, T. Xu, W. Liu and J. Gan, 2018. Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment. Environ. Pollut., 242: 1684-1692. https://doi.org/10.1016/j.envpol.2018.07.105
  97. Yates, K., P. Pollard, L. Davies, L. Webster and C. Moffat, 2013. Silicone rubber passive samplers for measuring pore water and exchangeable concentrations of polycyclic aromatic hydrocarbons concentrations in sediments. Sci. Total Environ., 463-464: 988-996. https://doi.org/10.1016/j.scitotenv.2013.06.035
  98. You, J., P.F. Landrum and M.J. Lydy, 2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ. Sci. Technol., 40: 6348-6353. https://doi.org/10.1021/es060830y
  99. Zeng, E.Y., D. Tsukada and D.W. Diehl, 2004. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Environ. Sci. Technol., 38: 5737-5743. https://doi.org/10.1021/es049680m
  100. Zhang, X., K.D. Oakes, S. Cui, L. Bragg, M.R. Servos and J. Pawliszyn, 2010. Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ. Sci. Technol., 44: 3417-3422. https://doi.org/10.1021/es903064t