Fig. 1. Parallel plate capacitor with direct current (DC) voltage source.
Fig. 2. Parallel plate capacitor with alternating current(AC) voltage source.
Fig. 3. Frequency response of dielectric mechanisms.
Fig. 4. Dipole rotation in electric field.
Fig. 5. Permittivity, ε′ (v) spectra and dielectric loss, ε″ (v) spectra of water at 25oC.
Fig. 6. Total permittivity, η″ (v) , permittivity, ε′ (v) spectra, and dielectric loss, ε″ (v) spectra of 0.1 M Fe(ClO4)2 at 25oC. The slashed areas show the contributions of the ion pair (IP) and free water molecule relaxation process to ε″ (v).
Fig. 7. Permittivity, ε′ (v) , and dielectric loss, ε″ (v) of 1 M LiBF4-PC compared with the spectrum calculated with Debye equation. The slashed areas show the contributions of the SIP, CIP and free PC solvents (PC and PC') relaxation process to ε″ (v).
Table 1. Possible ionic species in non-aqueous system, and their activity for Raman spectroscopy and DRS.
References
- J. O. M. Bockris, A. K. Reddy and M. Gamboa-Aldeco, "Modern Electrochemistry: An Introduction to an Interdisciplinary Area", Plenum Press, New York (1998).
- J. M. Barthel, H. Krienke and W. Kunz, "Physical Chemistry of Electrolyte Solutions: Modern Aspects", Springer, New York (1998).
- R. Buchner, G. T. Hefter and P. M. May, 'Dielectric Relaxation of Aqueous NaCl Solutions', J. Phys. Chem. A, 103, 1-9 (1999). https://doi.org/10.1021/jp982977k
- F. H. Stillinger Jr and R. Lovett, 'Ion-Pair Theory of Concentrated Electrolytes. I. Basic Concepts', J. Chem. Phys., 48, 3858-3868 (1968). https://doi.org/10.1063/1.1669709
- C. Bættcher, "Theory of Electric Polarization. Vol. 1: Dielectric in Static Fields", Elsevier, New York (1973).
- Von C. F. J. Bottcher and P. Bordewijk, "Theory of Electric Polarization. Vol. 11. Dielectrics in Time-Dependent Fields", Oxford, New York (1978).
- A. Schonhals and F. Kremer, "Broadband Dielectric Spectroscopy", Springer, Berlin (2012).
- R. Buchner and G. Hefter, 'Interactions and Dynamics in Electrolyte Solutions by Dielectric Spectroscopy', Phys. Chem. Chem. Phys., 11, 8984-8999 (2009). https://doi.org/10.1039/b906555p
- E. Cavell, P. Knight and M. Sheikh, 'Dielectric Relaxation in Non Aqueous Solutions. Part 2.-Solutions of Tri (n-Butyl) Ammonium Picrate and Iodide in Polar Solvents', J. Chem. Soc. Faraday Trans., 67, 2225-2233 (1971). https://doi.org/10.1039/TF9716702225
- Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama and A. Yamada, 'Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries', J. Am. Chem. Soc., 136, 5039-5046 (2014). https://doi.org/10.1021/ja412807w
- K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko and M. Watanabe, 'Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme-Lithium Salt Equimolar Complexes', J. Am. Chem. Soc., 133, 13121-13129 (2011). https://doi.org/10.1021/ja203983r
-
T. Doi, Y. Shimizu, M. Hashinokuchi and M. Inaba, '
$LiBF_4$ -Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at$LiNi_{0.5}Mn_{1.5}O_4$ /Electrolyte Interface', J Electrochem. Soc., 163, A2211-A2215 (2016). https://doi.org/10.1149/2.0331610jes -
T. Doi, R. Masuhara, M. Hashinokuchi, Y. Shimizu and M. Inaba, 'Concentrated
$LiPF_6/PC$ Electrolyte Solutions for 5-V$LiNi_{0.5}Mn_{1.5}O_4$ Positive Electrode in Lithium-Ion Batteries', Electrochim. Acta, 209, 219-224 (2016). https://doi.org/10.1016/j.electacta.2016.05.062 -
R. Buchner, G. Hefter, P. M. May and P. Sipos, 'Dielectric Relaxation of Dilute Aqueous NaOH,
$NaAl(OH)_4$ , and$NaB(OH)_4$ ', J. Phys. Chem. B, 103, 11186-11190 (1999). https://doi.org/10.1021/jp992551l - S. Hwang, D.-H. Kim, J. H. Shin, J. E. Jang, K. H. Ahn, C. Lee and H. Lee, 'Ionic Conduction and Solution Structure in LiPF6 and LiBF4 Propylene Carbonate Electrolytes', J. Phys. Chem. C, 122, 19438-19446 (2018). https://doi.org/10.1021/acs.jpcc.8b06035
- J. Barthel, M. Kleebauer and R. Buchner, 'Dielectric Relaxation of Electrolyte Solutions in Acetonitrile', J. Solution Chem., 24, 1-17 (1995). https://doi.org/10.1007/BF00973045
- P. Eberspacher, E. Wismeth, R. Buchner and J. Barthel, 'Ion Association of Alkaline and Alkaline-Earth Metal Perchlorates in Acetonitrile', J. Mol. Liq., 129, 3-12 (2006). https://doi.org/10.1016/j.molliq.2006.08.007
-
A. Placzek, G. Hefter, H. M. Rahman and R. Buchner, 'Dielectric Relaxation Study of the Ion Solvation and Association of
$NaCF_3SO_3$ ,$Mg(CF_3SO_3)_2$ , and$Ba(ClO_4)_2$ in N, N-Dimethylformamide', J. Phys. Chem. B, 115, 2234-2242 (2011). https://doi.org/10.1021/jp1116307 - B. Wurm, M. Münsterer, J. Richardi, R. Buchner and J. Barthel, 'Ion Association and Solvation of Perchlorate Salts in N, N-Dimethylformamide and N, N-Dimethylacetamide: A Dielectric Relaxation Study', J. Mol. Liq., 119, 97-106 (2005). https://doi.org/10.1016/j.molliq.2004.10.015
- N. Ottosson, J. Hunger and H. J. Bakker, 'Effect of Cations on the Hydrated Proton', J. Am. Chem. Soc., 136, 12808-12811 (2014). https://doi.org/10.1021/ja503635j
- N. Agmon, 'The Grotthuss Mechanism', Chem. Phys. Lett., 244, 456-462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J
- S. Cukierman, 'Et tu, Grotthuss! and Other Unfinished Stories', Biochim. Biophys. Acta, 1757, 876-885 (2006). https://doi.org/10.1016/j.bbabio.2005.12.001
-
R. Buchner, T. Chen and G. Hefter, 'Complexity in "Simple" Electrolyte Solutions: Ion Pairing in
$MgSO_4(aq)$ ', J. Phys. Chem. B, 108, 2365-2375 (2004). https://doi.org/10.1021/jp034870p - A. Tromans, P. M. May, G. Hefter, T. Sato and R. Buchner, 'Ion Pairing and Solvent Relaxation Processes in Aqueous Solutions of Sodium Malonate and Sodium Succinate', J. Phys. Chem. B, 108, 13789-13795 (2004). https://doi.org/10.1021/jp048575w