DOI QR코드

DOI QR Code

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope

사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구

  • Na, Yong Soo (Dept. of Civil and Transportation Sys. Eng., Ajou Univ.) ;
  • Lee, Sang Duk (Dept. of Civil and Transportation Sys. Eng., Ajou Univ.)
  • 나용수 (아주대학교 건설교통공학과) ;
  • 이상덕 (아주대학교 건설교통공학과)
  • Received : 2019.03.23
  • Accepted : 2019.04.24
  • Published : 2019.05.31

Abstract

While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.

얕은 터널에 대한 연구는 종방향 하중전이와 수평지반에 대한 연구가 주를 이루었으며 사면 하부에 위치한 얕은 터널 주변지반의 거동연구는 미흡한 실정이다. 따라서 본 연구에서는 사면 하부에 위치한 터널의 종방향 굴진에 따른 터널 주변지반의 거동을 규명하기 위해 변위제어방식으로 모형시험을 실시하였다. 모형터널은 폭 320mm, 높이 210mm, 길이 55mm 규격의 강성이 큰 알루미늄 강체로 제작하였고, 모형지반은 3가지 규격의 탄소봉을 혼합하여 균질한 모형지반을 조성하였다. 모형시험은 사면 경사와 토피고를 변수로 측벽변형을 발생시키는 변위제어방식으로 실시하였으며, 터널 벽체의 하중변화, 터널 주변지반의 하중전이와 지표침하 변화를 측정하고 분석하였다. 지표침하의 변화는 경사가 증가할수록 수평지반보다 20~39%의 증가가 나타났다. 터널 천단부 및 측벽부의 하중 변화는 사면 경사가 증가할수록 천단부는 최대 20%가 증가하고, 측벽부는 사면 경사의 영향으로 하중비가 감소하는 것을 확인하였다. 연직하중은 토피고가 1.0D 이하에서는 최대 128%의 하중증가가 나타났지만, 토피고가 1.5D 이상에서는 수평지반과 큰 차이가 나타나지 않았다. 이것으로 사면 경사는 토피고 1.0D에서 가장 큰 영향이 나타나는 것을 확인하였다.

Keywords

GJBGC4_2019_v35n5_21_f0001.png 이미지

Fig. 1. Deformation modes for shallow tunnel (Pinto et al., 2014)

GJBGC4_2019_v35n5_21_f0002.png 이미지

Fig. 2. Trapdoor test (Terzaghi, 1936)

GJBGC4_2019_v35n5_21_f0003.png 이미지

Fig. 3. Lateral ground subsidence (Lee, 2013)

GJBGC4_2019_v35n5_21_f0004.png 이미지

Fig. 4. Shape, slope and curvature of lateral ground subsidence (Attewell, 1978)

GJBGC4_2019_v35n5_21_f0005.png 이미지

Fig. 5. Model tunnel

GJBGC4_2019_v35n5_21_f0006.png 이미지

Fig. 6. Ground conditions of tunnel model tests

GJBGC4_2019_v35n5_21_f0007.png 이미지

Fig. 7. Instrument for measurement

GJBGC4_2019_v35n5_21_f0008.png 이미지

Fig. 9. Ground settlement distribution of inclined surface condition

GJBGC4_2019_v35n5_21_f0009.png 이미지

Fig. 8. Ground settlement distribution (A00 case)

GJBGC4_2019_v35n5_21_f0010.png 이미지

Fig. 10. Load ratio of tunnel according to tunnel displacement (A00 case)

GJBGC4_2019_v35n5_21_f0011.png 이미지

Fig. 11. Load ratio of tunnel according to tunnel displacement (A10 case)

GJBGC4_2019_v35n5_21_f0012.png 이미지

Fig. 12. Load ratio of tunnel according to tunnel displacement (A20 case)

GJBGC4_2019_v35n5_21_f0013.png 이미지

Fig. 14. Load ratio of around tunnel of inclined surface condition

GJBGC4_2019_v35n5_21_f0014.png 이미지

Fig. 13. Load ratio of around tunnel (A00 case)

Table 1. List of the tunnel model tests

GJBGC4_2019_v35n5_21_t0001.png 이미지

Table 3. Max. ground settlement and location of inclined surface condition

GJBGC4_2019_v35n5_21_t0002.png 이미지

Table 2. Ground settlement and location (A00 case)

GJBGC4_2019_v35n5_21_t0003.png 이미지

Table 4. Max. Load ratio according to slope

GJBGC4_2019_v35n5_21_t0004.png 이미지

References

  1. Attewell, P.B., Gloosop, N.H., and Farmer, I.W. (1978), "Ground Deformations Caused by Tunneling in a Silty Alluvial Clay", Ground Engineering.
  2. Choi, Y.J., Kang, S.G., and Lee, S.D. (2012), "Experimental Study on the Ground Subsidence Induced by Shallow Tunneling in Soft Ground", KTA 2012 Symposium, Seoul, pp.246-256.
  3. Clough, G.W. and Schmidt, B. (1981), Design and performance of excavations and tunnels in soft clay, Soft Clay Engineering. Ed. by Brand E.W. and Brenner R.P.
  4. Cording, E.J. and Hansmire, W.H. (1975), "Displacements around Soft Ground Tunnels", Proc. 5th Pan American Conf. SMFE, Buenos Aires, pp.571-633.
  5. Kim, Y.W. and Lee, S.D. (2016), "Experimental Study on the Longitudinal Load Transfer of a Shallow Tunnel Depending on the Deformation Tunnel Face (I)", Journal of Korean Tunnelling and Underground Space Association, pp.487-497.
  6. Koo, J.K., Yoo, B.S., and Lee, S.D. (1997), "An Experimental Study on the Mechanical Properties of Guide Wall in the Slurry Wall Method", JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS, Vol.17, No.3-4, pp.371-380.
  7. Lee, S.D. (2013), "Tunnel mechanics", CIR publication, pp.253-878.
  8. Park, C. H. and Lee, S. D. (2017), "Experimental Study on the behavior of the Adjacent Ground due to the Sidewall Failure in a Shallow Tunnel", Journal of Korean Tunnelling and Underground Space Association, pp.871-885. https://doi.org/10.9711/KTAJ.2017.19.6.871
  9. Park, E.Y., Kang, S.G., Lee, S.D., and Choi, S.I. (1994), "Failure Shape and Earth Pressure Distribution of Wall Subjected to Partially Passive Displacement", The Korean Society of Civil Engineers Conference Symposium, Vol.1994, No.1, pp.643-646.
  10. Peck, R.B. (1969), "Deep Excavations and Tunnels in Soft Ground", Proc. of the 7th Inter. Conf. on Soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume pp.225-290.
  11. Pinto, Federico and Andrew J. Whittle. (2014), "Ground Movements Due to Shallow Tunnels in Soft Ground. I: Analytical Solutions", Journal of Geotechnical and Geoenvironmental Engineering 140, No.4, ASCE, pp.1-5. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000996
  12. Terzaghi, K. (1936), "Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-door" Proc. 1st Int. Conf. on Soil Mech. Found. Engng., Cambridge, Vol.1, pp.307-311.