DOI QR코드

DOI QR Code

Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil

  • Oh, Shinyoung (Institute of Green-Bio Science and Technology, Seoul National University) ;
  • Ahn, Sye-Hee (Department of Forest Resources, Daegu University) ;
  • Choi, Joon Weon (Institute of Green-Bio Science and Technology, Seoul National University)
  • Received : 2019.02.19
  • Accepted : 2019.05.13
  • Published : 2019.05.25

Abstract

Effects of various types of zeolite on the catalytic performance of hydrodeoxygenation (HDO) of bio-oil obtained from waste larch wood pyrolysis were investigated herein. Bifunctional catalysts were prepared via wet impregnation. The catalysts were characterized through XRD, BET, and SEM. Experimental results demonstrated that HDO enhanced the fuel properties of waste wood bio-oil, such as higher heating values (HHV) (20.4-28.3 MJ/kg) than bio-oil (13.7 MJ/kg). Water content (from 19.3 in bio-oil to 3.1-16.6 wt% in heavy oils), the total acid number (from 150 in bio-oil to 28-77 mg KOH/g oil in heavy oils), and viscosity (from 103 in bio-oil to $40-69mm^2/s$ in heavy oils) also improved post HDO. In our experiments, depending on the zeolite support, NiFe/HBeta exhibited a high Si/Al ratio of 38 with a high specific surface area ($545.1m^2/g$), and, based on the yield of heavy oil (18.3-18.9 wt%) and HHV (22.4-25.2 MJ/kg), its performance was not significantly affected by temperature and solvent concentration variations. In contrast, NiFe/zeolite Y, which had a low Si/Al ratio of 5.2, exhibited the highest improved quality for heavy oil at high temperature, with an HHV of 28.3 MJ/kg at $350^{\circ}C$ with 25 wt% of solvent.

Keywords

HMJGBP_2019_v47n3_344_f0001.png 이미지

Fig. 1. Chemisorption features of the catalysts and supports.

HMJGBP_2019_v47n3_344_f0002.png 이미지

Fig. 2. SEM images of the prepared catalysts: (a) NiMo/Al2O3; (b) CoMo/Al2O3; (c) NiFe/HBeta; (d) NiFe/Zeolite Y; (e) NiFe/ZSM-5.

HMJGBP_2019_v47n3_344_f0003.png 이미지

Fig. 3. Surface morphology of fresh and used catalysts: (a) fresh NiMo/Al2O3; (b) used NiMo/Al2O3; (c) fresh NiFe/HBeta; (d) used NiFe/HBeta.

HMJGBP_2019_v47n3_344_f0004.png 이미지

Fig. 4. XRD peaks of the catalysts.

HMJGBP_2019_v47n3_344_f0005.png 이미지

Fig. 5. Van Krevelen diagram of the heavy oil.

Table 1. Characterization of supports and bifunctional catalysts

HMJGBP_2019_v47n3_344_t0001.png 이미지

Table 2. Mass balance of main products with different HDO temperature (25 wt% of ethanol)

HMJGBP_2019_v47n3_344_t0002.png 이미지

Table 3. Mass balance of main products with different ethanol concentration (under 350 °C)

HMJGBP_2019_v47n3_344_t0003.png 이미지

Table 4. Physicochemical properties of the heavy oils with 25 wt% of ethanol

HMJGBP_2019_v47n3_344_t0004.png 이미지

Table 5. Physicochemical properties of the heavy oils under 350 °C

HMJGBP_2019_v47n3_344_t0005.png 이미지

Table 6. Chemical distributions of heavy oil (350 °C, 25 wt% ethanol)

HMJGBP_2019_v47n3_344_t0006.png 이미지

References

  1. Ardiyanti, A., Khromova, S., Venderbosch, R., Yakovlev, V., Heeres, H. 2012. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a ${\delta}$-Al2O3 support. Applied Catalysis B: Environmental 117: 105-117.
  2. Blakeman, P.G., Burkholder, E.M., Chen, H.-Y., Collier, J.E., Fedeyko, J.M., Jobson, H., Rajaram, R.R. 2014. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catalysis Today 231: 56-63. https://doi.org/10.1016/j.cattod.2013.10.047
  3. Bredenberg, J.-S., Huuska, M., Raty, J., Korpio, M. 1982. Hydrogenolysis and hydrocracking of the carbon-oxygen bond: I. Hydrocracking of some simple aromatic O-compounds. Journal of Catalysis 77(1): 242-247. https://doi.org/10.1016/0021-9517(82)90164-6
  4. Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy 38: 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048
  5. Bui, V.N., Laurenti, D., Afanasiev, P., Geantet, C. 2011a. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Applied Catalysis B: Environmental 101(3-4): 239-245. https://doi.org/10.1016/j.apcatb.2010.10.025
  6. Bui, V.N., Laurenti, D., Delichere, P., Geantet, C. 2011b. Hydrodeoxygenation of guaiacol: Part II:Support effect for CoMoS catalysts on HDO activity and selectivity. Applied Catalysis B: Environmental 101(3-4): 246-255. https://doi.org/10.1016/j.apcatb.2010.10.031
  7. Centeno, A., Laurent, E., Delmon, B. 1995. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. Journal of Catalysis 154(2): 288-298. https://doi.org/10.1006/jcat.1995.1170
  8. Chen, D., Rebo, H., Moljord, K., Holmen, A. 1997. Influence of coke deposition on selectivity in zeolite catalysis. Industrial & engineering chemistry research 36(9): 3473-3479. https://doi.org/10.1021/ie9700223
  9. Chiaramonti, D., Prussi, M., Buffi, M., Rizzo, A. M., Pari, L. 2017. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Applied Energy 185: 963-972. https://doi.org/10.1016/j.apenergy.2015.12.001
  10. Choudhary, T., Phillips, C. 2011. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A:General 397(1-2): 1-12. https://doi.org/10.1016/j.apcata.2011.02.025
  11. Elliott, D.C., Hart, T.R. 2008. Catalytic hydroprocessing of chemical models for bio-oil. Energy & Fuels 23(2): 631-637. https://doi.org/10.1021/ef8007773
  12. Ferrari, M., Bosmans, S., Maggi, R., Delmon, B., Grange, P. 2001. CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catalysis Today 65(2-4): 257-264. https://doi.org/10.1016/S0920-5861(00)00559-9
  13. Friedl, A., Padouvas, E., Rotter, H., Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544(1): 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  14. Furimsky, E., Mikhlin, J., Jones, D., Adley, T., Baikowitz, H. 1986. On the mechanism of hydrodeoxygenation of ortho substituted phenols. The Canadian Journal of Chemical Engineering 64(6):982-985. https://doi.org/10.1002/cjce.5450640615
  15. Gonzalez-Borja, M.A., Resasco, D. E. 2011. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts. Energy & Fuels 25(9): 4155-4162. https://doi.org/10.1021/ef200728r
  16. Hirano, T., Hirata, R., Fujinuma, Y., Saigusa, N., Yamamoto, S., Harazono, Y., Takada, M., Inukai, K., Inoue, G. 2003. $CO_2$ and water vapor exchange of a larch forest in northern Japan. Tellus B:Chemical and Physical Meteorology 55(2): 244-257. https://doi.org/10.1034/j.1600-0889.2003.00063.x
  17. Huber, G.W., Iborra, S., Corma, A. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews 106(9): 4044-4098. https://doi.org/10.1021/cr068360d
  18. Hunter, B.M., Hieringer, W., Winkler, J., Gray, H., Muller, A. 2016. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science 9(5): 1734-1743. https://doi.org/10.1039/C6EE00377J
  19. Kim, Y.S. 2016. Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass. Journal of the Korean Wood Science and Technology 44(5): 622-628. https://doi.org/10.5658/WOOD.2016.44.5.622
  20. Lee, J.H., Moon, J.G., Choi, I.G., Choi, J.W. 2016. Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature. Journal of the Korean Wood Science and Technology 44(3): 350-359. https://doi.org/10.5658/WOOD.2016.44.3.350
  21. Laurent, E., Delmon, B. 1994a. Influence of water in the deactivation of a sulfided NiMo${\gamma}$-$Al_2O_3$ catalyst during hydrodeoxygenation. Journal of Catalysis 146(1): 281-291. https://doi.org/10.1016/0021-9517(94)90032-9
  22. Laurent, E., Delmon, B. 1994b. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/${\gamma}$-$Al_2O_3$ and NiMo/${\gamma}$ -$Al_2O_3$ catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General 109(1): 77-96. https://doi.org/10.1016/0926-860X(94)85004-6
  23. Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., Inoue, G. 2004. In situ comparison of four approaches to estimating soil $CO_2$ efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology 123(1-2):97-117. https://doi.org/10.1016/j.agrformet.2003.10.002
  24. Lippens, B.C., De Boer, J. 1965. Studies on pore systems in catalysts: V. The t method. Journal of Catalysis 4(3): 319-323. https://doi.org/10.1016/0021-9517(65)90307-6
  25. Long, J., Xu, Y., Wang, T., Yuan, Z., Shu, R., Zhang, Q., Ma, L. 2015. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Applied Energy 141: 70-79. https://doi.org/10.1016/j.apenergy.2014.12.025
  26. Lu, Q., Li, W.-Z., Zhu, X.-F. 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 50(5): 1376-1383. https://doi.org/10.1016/j.enconman.2009.01.001
  27. Moon, J.G., Hwang, H., Lee, J.H., Choi, I.G., Choi, J.W. 2016. Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products. Journal of the Korean Wood Science and Technology 44(5): 629-638 https://doi.org/10.5658/WOOD.2016.44.5.629
  28. Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K., Jensen, A.D. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407(1-2): 1-19. https://doi.org/10.1016/j.apcata.2011.08.046
  29. Munnik, P., de Jongh, P.E., de Jong, K.P. 2015. Recent developments in the synthesis of supported catalysts. Chemical reviews 115(14): 6687-6718. https://doi.org/10.1021/cr500486u
  30. Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., Gates, B.C. 2011a. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina:Reaction network including hydrodeoxygenation reactions. Energy & Fuels 25(8): 3417-3427. https://doi.org/10.1021/ef200803d
  31. Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., Gates, B.C. 2011b. Catalytic reactions of guaiacol:reaction network and evidence of oxygen removal in reactions with hydrogen. Catalysis letters 141(6):779-783. https://doi.org/10.1007/s10562-011-0576-4
  32. Nimmanwudipong, T., Runnebaum, R.C., Ebeler, S.E., Block, D.E., Gates, B.C. 2012. Upgrading of ligninderived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/${\gamma}-Al_2O_3$. Catalysis letters 142(2): 151-160. https://doi.org/10.1007/s10562-011-0759-z
  33. Ochoa-Hernandez, C., Yang, Y., Pizarro, P., Victor, A., Coronado, J.M., Serrano, D.P. 2013. Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15. Catalysis today 210: 81-88. https://doi.org/10.1016/j.cattod.2012.12.002
  34. Oh, S., Choi, H.S., Choi, I.-G., Choi, J.W. 2017. Evaluation of hydrodeoxygenation reactivity of pyrolysis bio-oil with various Ni-based catalysts for improvement of fuel properties. RSC Advances 7(25): 15116-15126. https://doi.org/10.1039/C7RA01166K
  35. Ohta, H., Yamamoto, K., Hayashi, M., Hamasaka, G., Uozumi, Y., Watanabe, Y. 2015. Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5. Chemical Communications 51(95): 17000-17003. https://doi.org/10.1039/C5CC05607A
  36. Olcese, R., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., Dufour, A. 2012. Gas-phase hydrodeoxygenation of guaiacol over Fe/$SiO_2$ catalyst. Applied Catalysis B: Environmental 115: 63-73.
  37. Prajitno, H., Insyani, R., Park, J., Ryu, C., Kim, J. 2016. Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Applied Energy 172: 12-22. https://doi.org/10.1016/j.apenergy.2016.03.093
  38. Shemfe, M., Gu, S., Fidalgo, B. 2017. Techno-economic analysis of biofuel production via bio-oil zeolite upgrading: An evaluation of two catalyst regeneration systems. Biomass and Bioenergy 98:182-193. https://doi.org/10.1016/j.biombioe.2017.01.020
  39. Wen, J.-L., Sun, S.-L., Yuan, T.-Q., Xu, F., Sun, R.-C. 2014. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy 121: 1-9. https://doi.org/10.1016/j.apenergy.2014.02.001
  40. Wildschut, J., Mahfud, F.H., Venderbosch, R.H., Heeres, H.J. 2009. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Industrial & Engineering Chemistry Research 48(23): 10324-10334. https://doi.org/10.1021/ie9006003
  41. Yakovlev, V., Khromova, S., Sherstyuk, O., Dundich, V., Ermakov, D.Y., Novopashina, V., Lebedev, M. Y., Bulavchenko, O., Parmon, V. 2009. Development of new catalytic systems for upgraded biofuels production from bio-crude-oil and biodiesel. Catalysis Today 144(3-4): 362-366. https://doi.org/10.1016/j.cattod.2009.03.002
  42. Yao, G., Wu, G., Dai, W., Guan, N., Li, L. 2015. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel 150: 175-183. https://doi.org/10.1016/j.fuel.2015.02.035
  43. Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews 110(6): 3552-3599. https://doi.org/10.1021/cr900354u
  44. Zhang, W., Yu, D., Ji, X., Huang, H. 2012. Efficient dehydration of bio-based 2, 3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green chemistry 14(12): 3441-3450. https://doi.org/10.1039/c2gc36324k
  45. Zhang, X., Tang, W., Zhang, Q., Wang, T., Ma, L. 2018. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Applied Energy 227: 73-79. https://doi.org/10.1016/j.apenergy.2017.08.078
  46. Zhang, X., Zhang, Q., Wang, T., Ma, L., Yu, Y., Chen, L. 2013. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over $Ni/SiO_2-ZrO_2$ catalysts. Bioresource technology 134: 73-80. https://doi.org/10.1016/j.biortech.2013.02.039
  47. Zhang, Y., Bi, P., Wang, J., Jiang, P., Wu, X., Xue, H., Liu, J., Zhou, X., Li, Q. 2015. Production of jet and diesel biofuels from renewable lignocellulosic biomass. Applied Energy 150: 128-137. https://doi.org/10.1016/j.apenergy.2015.04.023
  48. Zhao, C., Lercher, J.A. 2012. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie 124(24): 6037-6042. https://doi.org/10.1002/ange.201108306
  49. Zhao, H., Li, D., Bui, P., Oyama, S. 2011. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A:General 391(1-2): 305-310. https://doi.org/10.1016/j.apcata.2010.07.039
  50. Zhu, X., Lobban, L.L., Mallinson, R.G., Resasco, D.E. 2011. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis 281(1): 21-29. https://doi.org/10.1016/j.jcat.2011.03.030