DOI QR코드

DOI QR Code

Effect of Heat Treatment and Particle Size on the Crystalline Properties of Wood Cellulose

입자크기 및 열처리가 목재 셀룰로오스의 결정 특성에 미치는 영향

  • Kim, Ah-ran (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
  • Received : 2019.01.24
  • Accepted : 2019.05.08
  • Published : 2019.05.25

Abstract

This study was carried out to investigate the effect of heat-treatment and particle size on the crystalline properties of the wood cellulose. The color of wood flours was changed from light yellow in control sample to dark yellow or deep brown by heat treatment at $100^{\circ}C$ to $200^{\circ}C$. Relative crystallinity of the heat treated wood cellulose decreased with decreasing particle size from wood chips to 200 mesh, and there was little change in the crystal width. As the temperature was increased, relative crystallinity of the wood increased and crystal width was not changed. As a result of the FT-IR analysis, it was confirmed that the peaks were gradually decreased at -OH elongation as the heat-treated temperature was increased. The lignin C-H bending of $1425cm^{-1}$ and the hemicellulose C-H bending of $1370cm^{-1}$ did not change with the increase of the heat treatment temperature. In addition, it was revealed that C-C stretching of carbohydrate near $1031cm^{-1}$ decreased with increasing heat treatment temperature. Consequently, it is suggested that particle size and heat treatment affected the crystalline properties of wood cellulose.

본 연구에서는 목분입자 크기 및 열처리가 목재 셀룰로오스의 결정 특성에 미치는 영향을 검토하기 위하여 형태학적 특성, 셀룰로오스 결정특성, 화학성분분석을 실시하였다. 목분의 색은 열처리 온도가 $100^{\circ}C$에서 $200^{\circ}C$로 높아짐에 따라, 진한 황색에서 진한 갈색을 보였다. 열처리 목재셀룰로오스의 상대결정화도는 목재?에서 200 mesh로 목재의 입자 크기가 작아질수록 낮은 값을 보였으며, 결정폭의 변화는 거의 없었다. 온도가 $100^{\circ}C$에서 $200^{\circ}C$로 증가함에 따라 목재의 상대결정화도가 증가하였고, 결정 폭의 변화는 뚜렷하지 않았다. FT-IR분석 결과, 열처리 온도가 높아짐에 따라 -OH 신축에서 피크가 점차 감소한 것을 확인하였다. $1425cm^{-1}$의 리그닌 C-H 굽힘과, $1370cm^{-1}$의 헤미셀룰로오스 C-H 굽힘은 열처리 온도의 증가에 따른 차이를 보기 어려웠다. $1235cm^{-1}$의 OH-phenolic 신축의 특성 피크와 $1031cm^{-1}$ 부근의 탄수화물의 C-C 신축이 열처리 온도가 높아질수록 감소한 것을 확인할 수 있었다. 결론적으로 목재의 입자크기 및 열처리는 목재 셀룰로오스의 결정특성 변화에 영향을 주는 것이 확인되었다.

Keywords

HMJGBP_2019_v47n3_299_f0001.png 이미지

Fig. 1. Hammer mill1 and continuous grinder2 usedto prepare the wood. Sources: 1(Hammer Mill Vertica DFZK [GM], BühlerGmbH Germany); 2(KOREAMEDI CO., LTD. Korea).

HMJGBP_2019_v47n3_299_f0002.png 이미지

Fig. 2. Appearance of wood flours treated at different temperatures.

HMJGBP_2019_v47n3_299_f0003.png 이미지

Fig. 3. Micrographs of heat-treated wood flours at different temperatures.

HMJGBP_2019_v47n3_299_f0004.png 이미지

Fig. 4. X-ray diffraction patterns of heat-treated wood samples of different sizes.

HMJGBP_2019_v47n3_299_f0005.png 이미지

Fig. 5. Fourier-transform infrared spectroscopy (FTIR) spectra of 100-mesh heat-treated wood flours at different temperatures.

Table 1. Weight loss of wood flours under different conditions

HMJGBP_2019_v47n3_299_t0001.png 이미지

Table 2. Effect of heat treatment on the crystalline properties of wood samples of different sizes

HMJGBP_2019_v47n3_299_t0002.png 이미지

Table 3. Assignment of the infrared bands to functional groups in wood

HMJGBP_2019_v47n3_299_t0003.png 이미지

Table 4. Assignment of the infrared bands to functional groups in wood (Bodirlau and Teaca., 2009; Dai and Fan, 2011; Wang et al., 2012).

HMJGBP_2019_v47n3_299_t0004.png 이미지

References

  1. Akgul, M., Gumuşkaya, E., Korkut, S. 2007. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology 41(3): 281. https://doi.org/10.1007/s00226-006-0110-9
  2. Bhuiyan, M.T.R., Hirai, N., Sobue, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46(6): 431-436. https://doi.org/10.1007/BF00765800
  3. Boonstra, M.J., Van Acker, J., Kegel, E., Stevens, M. 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Science and Technology 41(1): 31-57. https://doi.org/10.1007/s00226-006-0087-4
  4. Bodirlau, R., Teaca, C.A. 2009. Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Romanian Journal of Physics 54(1-2):93-104.
  5. Chung, H., Han, Y., Park, J.H., Chang, Y.S., Park, Y., Yang, S.Y., Yeo, H. 2016. A Study on Dimensional Stability and Thermal Performance of Superheated Steam Treated and Thermal Compressed Wood. Journal of the Korean Wood Science and Technology 44(2): 184-190. https://doi.org/10.5658/WOOD.2016.44.2.184
  6. Cermak, P., Dejmal, A. 2013. The effect of heat and ammonia treatment on colour response of oak wood (Quercus robur) and comparison of some physical and mechanical properties. Maderas. Ciencia y tecnologia 15(3): 375-389.
  7. Dai, D., Fan, M. 2011. Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vibrational Spectroscopy, 55(2):300-306. https://doi.org/10.1016/j.vibspec.2010.12.009
  8. Esteves, B. and Pereira, H. 2008. Wood modification by heat treatment: A review. BioResources 4(1):370-404. https://doi.org/10.15376/biores.4.1.370-404
  9. Feher, S., Koman, S., Borcsok, Z., Robert, T. 2014. Modification of hardwood veneers by heat treatment for enhanced colors. BioResources 9(2):3456-3465.
  10. Garrote, G., Dominguez, H., Parajo, J.C. 1999. Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products 57(3): 191-202. https://doi.org/10.1007/s001070050039
  11. Gong, S.H., Ahn, B.J., Lee, S.M., Lee, J.J., Lee, Y.K., Lee, W.J. 2016. Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates. Journal of the Korean Wood Science and Technology 44(5): 685-694 https://doi.org/10.5658/WOOD.2016.44.5.685
  12. Han, S.Y., Park, C.W., Kim, N.H., Lee, S.H. 2017. Co-solvent system of [EMIM] Ac and DMF to improve the enzymatic saccharification of pussy willow (Salix gracilistyla Miq.). Holzforschung 71(1): 43-50. https://doi.org/10.1515/hf-2016-0042
  13. Hidayat, W., Qi, Y., Jang, J.H., Febrianto, F., Lee, S.H., Kim, N.H. 2016. Effect of treatment duration and clamping on the properties of heat-treated okan wood. BioResources 11(4): 10070-10086.
  14. Hidayat, W., Qi, Y., Jang, J.H., Park, B.H., Banuwa, I.S., Febrianto, F., Kim, N.H. 2017. Color change and consumer preferences towards color of heat-treated korean white pine and royal paulownia woods. Journal of the Korean Wood Science and Technology 45(2): 213-222. https://doi.org/10.5658/WOOD.2017.45.2.213
  15. Isogai. A. 2008. Advanced Technologies of Cellulose Utilizaton, cmcbooks, 298-309.
  16. Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic plantation resources. Journal of the Korean Wood Science and Technology 40(3): 156-163. https://doi.org/10.5658/WOOD.2012.40.3.156
  17. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology 47(5): 925-937. https://doi.org/10.1007/s00226-013-0543-x
  18. Jang, J.H., Lee, S.H., Kim, N.H. 2014. Effect of pMDI as coupling agent on the properties of microfibrillated cellulose-reinforced PBS nanocomposite. Journal of the Korean Wood Sciences and Technology 42(4): 483-490. https://doi.org/10.5658/WOOD.2014.42.4.483
  19. Jang, J.H., Lee, M., Kang, E.C., Lee, S.M. 2017. Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II)- Formaldehyde.Total Volatile Organic Compounds Emission Properties and Combustion Shapes. Journal of the Korean Wood Science and Technology 45(5): 580-587. https://doi.org/10.5658/WOOD.2017.45.5.580
  20. Jiang, J., Lu, J., Zhou, Y., Huang, R., Zhao, Y., Jiang, J. 2014. Optimization of processing variables during heat treatment of oak (Quercus mongolica) wood. Wood Science and Technology 48(2): 253-267. https://doi.org/10.1007/s00226-013-0600-5
  21. Kim, Y.K., Kwon, G.J., Kim, A.R., Lee, H.S. 2018. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. Journal of the Korean Wood Science and Technology 46(5): 511-526. https://doi.org/10.5658/WOOD.2018.46.5.511
  22. Kim, Y.S. 2016. Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation. Journal of the Korean Wood Science and Technology 44(3):457-476. https://doi.org/10.5658/WOOD.2016.44.3.457
  23. Lee, D., Kim, B.J. 2016. A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis. Journal of the Korean Wood Science and Technology 44(1): 96-105. https://doi.org/10.5658/WOOD.2016.44.1.96
  24. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresources Technology 101(19): 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  25. Martinka, J., Hroncova, E., Chrebet, T., Balog, K. 2014. The influence of spruce wood heat treatment on its thermal stability and burning process. European Journal of Wood and Wood Products 72(4):477-486. https://doi.org/10.1007/s00107-014-0805-9
  26. Park, Y., Han, Y., Park, J.H., Chang, Y.S., Yang, S.Y., Chung, H. Yeo, H. 2015. Evaluation of physicomechanical properties and durability of Larix kaempferi wood heat-treated by hot air. Journal of the Korean Wood Science and Technology 43(3):334-343. https://doi.org/10.5658/WOOD.2015.43.3.334
  27. Park, Y.G,, Han, Y.J.,. Park, J.H,, Chung, H.W., Kim, H.B,, Yang, S.Y., Chang, Y.A., Yeo, H.Y. 2018. Evaluation of Deterioration of Larix kaempferi Wood Heat-treated by Superheated Steam through Field Decay Test for 12 Months. Journal of the Korean Wood Science and Technology 46(5):497-510. https://doi.org/10.5658/WOOD.2018.46.5.497
  28. Sandberg, D., Kutnar, A. 2015. Recent development of thermal wood treatments: Relationship between modification processing, product properties, and the associated environmental impacts. Wood Science and Technology, pp. 55-59,
  29. Sandberg, D., Haller, P., Navi, P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering 8(1): 64-88. https://doi.org/10.1080/17480272.2012.751935
  30. Scherre, P. 1918. Gottinger Nacher 2: 98.
  31. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. 1989. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29: 786-794. https://doi.org/10.1177/004051755902901003
  32. Seo, P.N., Han, S.Y., Park, C.W., Lee, S.Y., Kim, N.H., Lee, S.H. 2018. Effect of Alkaline Peroxide Treatment on the Chemical Compositions and Characteristics of Lignocellulosic Nanofibrils. BioResources 14(1): 193-206.
  33. Stenudd, S. 2004. Color response in silver birch during kiln-drying. Forest Products Journal 54(6).
  34. Tu, D., Liao, L., Yun, H., Zhou, Q., Cao, X., Huang, J. 2014. Effects of Heat Treatment on the Machining Properties of Eucalyptus urophylla${\times}$ E. camaldulensis. BioResources 9(2): 2847-2855.
  35. Vybohova, E., Kucerova, V., Andor, T., Balazova, Ž., Veľkova, V. 2018. The Effect of Heat Treatment on the Chemical Composition of Ash Wood. BioResources 13(4): 8394-8408.
  36. Wang, J., Zheng, Y., Wang, A. 2012. Effect of kapok fiber treated with various solvents on oil absorbency. Industrial Crops and Products 40: 178-184. https://doi.org/10.1016/j.indcrop.2012.03.002
  37. Wang, X., Wu, Z., Fang, L., Wei, P., Fei, B., Liu, J. 2015. Changes of chemical composition, crystallinity, and fourier transform infrared spectra of eucalypt pellita wood under different vacuum heat treatment temperatures. Forest Products Journal 65(7): 346-351. https://doi.org/10.13073/FPJ-D-13-00099
  38. Won, K.R., Hong, N.E., Jung, S.Y., Kim, B.R., Byeon, H.S. 2017. Evaluation of Two Species of Soft Wood Decay Resistance for Heat-Treated Wood Using the Catalyst ($H_2SO_4$). Journal of the Korean Wood Science and Technology 45(2): 195-201. https://doi.org/10.5658/WOOD.2017.45.2.195
  39. Yun, H., Tu, D., Li, K., Huang, J., Ou, L. 2015. Variation and Correlation of Heat-Treated Wood's Crystalline Structure and Impact Toughness. BioResources 10(1): 1487-1494.