Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2016S1A5A2A03927883).
References
- Abbasi, A., Sarker, S., and Chiang, R. H. (2016). Big data research in information systems: Toward an inclusive research agenda. Journal of the Association for Information Systems, 17(2), 1-32. https://doi.org/10.17705/1jais.00419
- Agarwal, R., and Dhar, V. (2014). Editorial-big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443-448. https://doi.org/10.1287/isre.2014.0546
- Baek, H., Ahn, J., and Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International Journal of Electronic Commerce, 17(2), 99-126. https://doi.org/10.2753/JEC1086-4415170204
- Berente, N., Seidel, S., and Safadi, H. (2018). Research commentary-data-driven computationally intensive theory development. Information Systems Research. Ariticles in Advance, Retrieved form https://pubsonline.informs.org/doi/10.1287/isre.2018.0774
- Bizer, C., Cyganiak, R., and Heath, T. (2007). How to publish linked data on the web. Retrieved from http://wifo5-03.informatik.uni-mannheim.de/bizer/HowtoPublishLinkedData.htm
- Boell, S. K., and Cecez-Kecmanovic, D. (2015). Debating systematic literature reviews (SLR) and their ramifications for IS: A rejoinder to Mike Chiasson, Briony Oates, Ulrike Schultze, and Richard Watson. Journal of Information Technology, 30(2), 188-193. https://doi.org/10.1057/jit.2015.15
- Breuker, D., Matzner, M., Delfmann, P., and Becker, J. (2016). Comprehensible predictive models for business processes. MIS Quarterly, 40(4), 1009-1034. https://doi.org/10.25300/MISQ/2016/40.4.10
- Calheiros, A. C., Moro, S., and Rita, P. (2017). Sentiment classification of consumer-generated online reviews using topic modeling. Journal of Hospitality Marketing & Management, 26(7), 675-693. https://doi.org/10.1080/19368623.2017.1310075
- Callon, M., Courtial, J. P., Turner, W. A., and Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Information (International Social Science Council), 22(2), 191-235. https://doi.org/10.1177/053901883022002003
- Cao, Q., Duan, W., and Gan, Q. (2011). Exploring determinants of voting for the "helpfulness" of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. https://doi.org/10.1016/j.dss.2010.11.009
- Chang, C. W., Lin, C. T., and Wang, L. Q (2009). Mining the text information to optimizing the customer relationship management. Expert Systems with applications, 36(2), 1433-1443. https://doi.org/10.1016/j.eswa.2007.11.027
- Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide.
- Chau, M., and Xu, J (2012). Business Intelligence in Blogs: Understanding consumer interactions and communities. MIS Quarterly, 36(4), 1189-1216. https://doi.org/10.2307/41703504
- Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
- Chen, R., Zheng, Y., Xu, W., Liu, M., and Wang, J. (2018). Secondhand seller reputation in online markets: A text analytics framework. Decision Support Systems, 108, 96-106. https://doi.org/10.1016/j.dss.2018.02.008
- Cho W., Rho, S., Yun, J. A., and Park, J. (2011). A new approach to automatic keyword generation using inverse vector space model. Asia Pacific Journal of Information Systems, 21(1), 103-122.
- Corley, K. G., and Gioia, D. A. (2011). Building theory about theory building: What constitutes a theoretical contribution? Academy of Management Review, 36(1), 12-32. https://doi.org/10.5465/amr.2009.0486
- Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Cronin Jr, J. J., and Taylor, S. A. (1992). Measuring service quality: A reexamination and extension. The Journal of Marketing, 56(3), 55-68. https://doi.org/10.1177/002224299205600304
- Debortoli, S., Muller, O., Junglas, I. A., and vom Brocke, J. (2016). Text mining for information systems researchers: An annotated topic modeling tutorial. Communications of the Association for Information Systems, 39(7).
- Dong, W., Liao, S., and Zhang, Z. (2018). Leveraging financial social media data for corporate fraud detection. Journal of Management Information Systems, 35(2), 461-487. https://doi.org/10.1080/07421222.2018.1451954
- Duan, W., Cao, Q., Yu, Y., and Levy, S. (2013). Mining online user-generated content: Using sentiment analysis technique to study hotel service quality. System Sciences (HICSS), 2013 46th Hawaii International Conference on: IEEE, 3119-3128.
- Duan, W., Yu, Y., Cao, Q., and Levy, S. (2016). Exploring the impact of social media on hotel service performance: A sentimental analysis approach. Cornell Hospitality Quarterly, 57(3), 282-296. https://doi.org/10.1177/1938965515620483
- Evangelopoulos, N., Zhang, X., and Prybutok, V. R. (2012). Latent semantic analysis: Five methodological recommendations. European Journal of Information Systems, 21(1), 70-86. https://doi.org/10.1057/ejis.2010.61
- Feldman, R., and Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press.
- Gao, B., Hu, N., and Bose, I. (2017). Follow the herd or be myself? An analysis of consistency in behavior of reviewers and helpfulness of their reviews. Decision Support Systems, 9, 1-11. https://doi.org/10.1016/j.dss.2016.11.005
- Godnov, U., and Redek, T. (2016). Application of text mining in tourism: case of Croatia. Annals of Tourism Research, 58, 162-166. https://doi.org/10.1016/j.annals.2016.02.005
- Gorla, N. (2011). An assessment of information systems service quality using SERVQUAL+. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 42(3), 46-70. https://doi.org/10.1145/2038056.2038060
- Gupta, M., and George, J. F. (2016). Toward the development of a big data analytics capability. Information and Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004
- He, W. (2013). Examining students' online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. https://doi.org/10.1016/j.chb.2012.07.020
- Hemmington, N., Kim, P. B., and Wang, C. (2018). Benchmarking hotel service quality using two-dimensional importance-performance benchmark vectors (IPBV). Journal of Service Theory and Practice, 28(1), 2-25. https://doi.org/10.1108/JSTP-06-2017-0103
- Hong, T., and Park, J. (2011). Feature selection for multi-class support vector machines using an impurity measure of classification trees: an application to the credit rating of S&P 500 companies. Asia Pacific Journal of Information Systems, 21(2), 43-58.
- Hsieh, L. F., Lin, L. H., and Lin, Y. Y. (2008). A service quality measurement architecture for hot spring hotels in Taiwan. Tourism Management, 29(3), 429-438. https://doi.org/10.1016/j.tourman.2007.05.009
- Jabr, W., Mookerjee, R., Tan, Y., and Mookerjee, V. (2014). Leveraging philanthropic behavior for customer support: The case of user support forums. MIS Quarterly, 38(1), 187-208. https://doi.org/10.25300/MISQ/2014/38.1.09
- Jakopovic, H., and Preradovic, N. M. (2013). Evaluation in public relations-sentiment and social media analysis of Croatia Airlines. 7th European Computing Conference (ECC'13).
- Jiao, J., Zhang, L., Pokharel, S., and He, Z. (2007). Identifying generic routings for product families based on text mining and tree matching. Decision Support Systems, 43(3), 866-883. https://doi.org/10.1016/j.dss.2007.01.001
- Junker, M., Hoch, R., and Dengel, A. (1999). On the evaluation of document analysis components by recall, precision, and accuracy. Document Analysis and Recognition, 1999. ICDAR'99. Proceedings of the Fifth International Conference on: IEEE, 713-716.
- Kang, D., and Park, Y. (2014). Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and vikor approach. Expert Systems with Applications, 41(4), 1041-1050. https://doi.org/10.1016/j.eswa.2013.07.101
- Keith, N. K., and Simmers, C. S. (2013). Measuring hotel service quality perceptions: The disparity between comment cards and lodgserv. Academy of Marketing Studies Journal, 17(2), 119-148.
- Kettinger, W. J., and Lee, C. C. (1994). Perceived service quality and user satisfaction with the information services function. Decision Sciences, 25(5/6), 737-766.
- Kim, K., and Ahn, H. (2010). Customer level classification model using ordinal multiclass support vector machines. Asia Pacific Journal of Information Systems, 20(2), 23-37. https://doi.org/10.5859/KAIS.2011.20.4.23
- Kim, K., Park, O.J., Yun, S., and Yun, H. (2017). What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management. Technological Forecasting and Social Change, 123, 362-369. https://doi.org/10.1016/j.techfore.2017.01.001
- Kim, T., Jung, W., and Lee, S. T. (2014). The analysis on the relationship between firms' exposures to SNS and stock prices in Korea. Asia Pacific Journal of Information Systems, 24(2), 233-253. https://doi.org/10.14329/apjis.2014.24.2.233
- Kotu, V., and Deshpande, B. (2014). Predictive analytics and data mining: Concepts and practice with rapidminer. Morgan Kaufmann.
- Lee, J. Y., Kim, H., and Kim, P. J. (2010a). Domain analysis with text mining: analysis of digital library research trends using profiling methods. Journal of Information Science, 36(2), 144-161. https://doi.org/10.1177/0165551509353251
- Lee, S., Baker, J., Song, J., and Wetherbe, J. C. (2010b). An empirical comparison of four text mining methods. System Sciences (HICSS). 2010 43rd Hawaii International Conference on: IEEE, 1-10.
- Li, N., and Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48(2), 354-368. https://doi.org/10.1016/j.dss.2009.09.003
- Li, W., Chen, H., and Nunamaker Jr, J. F. (2016). Identifying and profiling key sellers in cyber carding community: AZSecure text mining system. Journal of Management Information Systems, 33(4), 1059-1086. https://doi.org/10.1080/07421222.2016.1267528
- Liang, N., Biros, D. P., and Luse, A. (2016). An empirical validation of malicious insider characteristics. Journal of Management Information Systems, 33(2), 361-392. https://doi.org/10.1080/07421222.2016.1205925
- Lim, C., Kim, M. J., Kim, K. H., Kim, K. J., and Maglio, P. P. (2018). Using data to advance service: Managerial issues and theoretical implications from action research. Journal of Service Theory and Practice, 28(1), 99-128. https://doi.org/10.1108/JSTP-08-2016-0141
- Liu, G. Y., Hu, J. M., and Wang, H. L. (2011). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203-217. https://doi.org/10.1007/s11192-011-0586-4
- Liu, X., Yu, S., Janssens, F., Glanzel, W., Moreau, Y., and De Moor, B. (2010). Weighted Hybrid clustering by combining text mining and bibliometrics on a large scale journal database. Journal of the American Society for Information Science and Technology, 61(6), 1105-1119. https://doi.org/10.1002/asi.21312
- Liu, Y., Navathe, S. B., Civera, J., Dasigi, V., Ram, A., Ciliax, B. J., and Dingledine, R. (2005). Text mining biomedical literature for discovering gene-to-gene relationships: A comparative study of algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(1), 62-76. https://doi.org/10.1109/TCBB.2005.14
- Lo, S. (2008). Web service quality control based on text mining using support vector machine. Expert Systems with Applications, 34(1), 603-610. https://doi.org/10.1016/j.eswa.2006.09.026
- Lu, Y., Luo, X., Polgar, M., and Cao, Y. (2010). Social network analysis of a criminal hacker community. Journal of Computer Information Systems, 51(2), 31-41.
- Luo, X. M., Gu, B., Zhang, J., and Phang, C. W. (2017). Expert blogs and consumer perceptions of competing brands. MIS Quarterly, 41(2), 371-396. https://doi.org/10.25300/MISQ/2017/41.2.03
- Mai, F., Shan, Z., Bai, Q., Wang, X., and Chiang, R. H. (2018). How does social media impact Bitcoin value? A test of the silent majority hypothesis. Journal of Management Information Systems, 35(1), 19-52. https://doi.org/10.1080/07421222.2018.1440774
- Meire, M., Ballings, M., and Van den Poel, D. (2016). The added value of auxiliary data in sentiment analysis of Facebook posts. Decision Support Systems, 89, 98-112. https://doi.org/10.1016/j.dss.2016.06.013
- Montoyo, A., MartiNez-Barco, P., and Balahur, A. (2012). Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. Decision Support Systems, 53(4), 675-679. https://doi.org/10.1016/j.dss.2012.05.022
- Moreno, A., and Terwiesch, C. (2014). Doing business with strangers: Reputation in online service marketplaces. Information Systems Research, 25(4), 865-886. https://doi.org/10.1287/isre.2014.0549
- Nadkarni, A., and Vesset, D. (2015). Worldwide big data technology and services forecast, 2015-2019. International Data Corporation. IDC, 259532.
- Nasukawa, T., and Nagano, T. (2001). Text analysis and knowledge mining system. IBM Systems Journal, 40(4), 967-984. https://doi.org/10.1147/sj.404.0967
- Niu, R. H., and Fan, Y. (2018). An exploratory study of online review management in hospitality services. Journal of Service Theory and Practice, 28(1), 79-98. https://doi.org/10.1108/JSTP-09-2016-0158
- Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40.
- Park, Y., and Lee, S. (2011). How to design and utilize online customer center to support new product concept generation. Expert Systems with Applications, 38(8), 10638-10647. https://doi.org/10.1016/j.eswa.2011.02.125
- Patil, Y., and Patil, S. (2016). Review of web crawlers with specification and working. International Journal of Advanced Research Computer and Communication Engineering, 5(1), 220-223.
- Rai, A. (2016). Editor's comments: Synergies between big data and theory. MIS Quarterly, 40(2), iii-ix.
- Ranaweera, C., and Sigala, M. (2015). From service quality to service theory and practice. Journal of Service Theory and Practice, 25(1), 2-9. https://doi.org/10.1108/JSTP-11-2014-0248
- Rossetti, M., Stella, F., and Zanker, M. (2016). Analyzing user reviews in tourism with topic models. Information Technology & Tourism, 16(1), 5-21. https://doi.org/10.1007/s40558-015-0035-y
- Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47. https://doi.org/10.1145/505282.505283
- Shi, Z., Lee, G. M., and Whinston, A. B. (2016). Toward a better measure of business proximity: Topic modeling for industry intelligence. MIS Quarterly, 40(4), 1035-1056. https://doi.org/10.25300/MISQ/2016/40.4.11
- Singh, P. V., Sahoo, N., and Mukhopadhyay, T. (2014). How to attract and retain readers in enterprise blogging? Information Systems Research, 25(1), 35-52. https://doi.org/10.1287/isre.2013.0509
- Singh, R., and Woo, J. (2019). Applications of machine learning models on yelp data. Asia Pacific Journal of Information Systems, 29(1), 35-49. https://doi.org/10.14329/apjis.2019.29.1.35
- Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269. https://doi.org/10.1002/asi.4630240406
- Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP): Citeseer, 1631-1642.
- Suh, J. H., Park, C. H., and Jeon, S. H. (2010). Applying text and data mining techniques to forecasting the trend of petitions filed to e-people. Expert Systems with Applications, 37(10), 7255-7268. https://doi.org/10.1016/j.eswa.2010.04.002
- Sutton, R. I., and Staw, B. M. (1995). What theory is not. Administrative Science Quarterly, 40(3), 371-384. https://doi.org/10.2307/2393788
- Tan, S. (2006). An effective refinement strategy for KNN text classifier. Expert Systems with Applications, 30(2), 290-298. https://doi.org/10.1016/j.eswa.2005.07.019
- Thorleuchter, D., and Van Den Poel, D. (2012). Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Systems with Applications, 39(17), 13026-13034. https://doi.org/10.1016/j.eswa.2012.05.096
- Tong, S., and Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45-66.
- Tseng, Y. H., Lin, C. J., and Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. https://doi.org/10.1016/j.ipm.2006.11.011
- Uramoto, N., Matsuzawa, H., Nagano, T., Murakami, A., Takeuchi, H., and Takeda, K. (2004). A Text-mining system for knowledge discovery from biomedical documents. IBM Systems Journal, 43(3), 516-533. https://doi.org/10.1147/sj.433.0516
- Van de Ven, A. H. (2007). Engaged scholarship: A guide for organizational and social research. Oxford University Press on Demand.
- Van Rijsbergen, C. J. (1977). A theoretical basis for the use of co-occurrence data in information retrieval. Journal of Documentation, 33(2), 106-119. https://doi.org/10.1108/eb026637
- Wang, T., Kannan, K. N., and Ulmer, J. R. (2013). The association between the disclosure and the realization of information security risk factors. Information Systems Research, 24(2), 201-218. https://doi.org/10.1287/isre.1120.0437
- Wang, Y., Aguirre-Urreta, M., and Song, J. (2016). Investigating the value of information in mobile commerce: A text mining approach. Asia Pacific Journal of Information Systems, 26(4), 577-592. https://doi.org/10.14329/apjis.2016.26.4.577
- Wang, Y., and Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87-95. https://doi.org/10.1016/j.dss.2017.11.001
- Wang, Z., Zhao, H., and Wang, Y. (2015). Social networks in marketing research 2001-2014: A co-word analysis. Scientometrics, 105(1), 65-82. https://doi.org/10.1007/s11192-015-1672-9
- Weber, R. (2003). Editor's Comment: Theoretically Speaking. MIS Quarterly, 27(3), 3-12. https://doi.org/10.2307/30036536
- Webster, J., and Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), 13-23.
- Winkler, M., Abrahams, A. S., Gruss, R., and Ehsani, J. P. (2016). Toy safety surveillance from online reviews. Decision Support Systems, 90, 23-32. https://doi.org/10.1016/j.dss.2016.06.016
- Yan, B. N., Lee, T. S., and Lee, T. P. (2015). Mapping the intellectual structure of the Internet of Things (IoT) field (2000-2014): A co-word analysis. Scientometrics, 105(2), 1285-1300. https://doi.org/10.1007/s11192-015-1740-1
- Yee Liau, B., and Pei Tan, P. (2014). Gaining customer knowledge in low cost airlines through text mining. Industrial Management & Data Systems, 114(9), 1344-1359. https://doi.org/10.1108/IMDS-07-2014-0225
- Yilmaz, I. (2009). Measurement of service quality in the hotel industry. Anatolia, 20(2), 375-386. https://doi.org/10.1080/13032917.2009.10518915
- Zeithaml, V. A., Berry, L. L., and Parasuraman, A. (1996). The behavioral consequences of service quality. The Journal of Marketing, 60(2), 31-46. https://doi.org/10.1177/002224299606000203
- Zhang, K., Bhattacharyya, S., and Ram, S. (2016). Large-scale network analysis for online social brand advertising. MIS Quarterly, 40(4), 849-868. https://doi.org/10.25300/MISQ/2016/40.4.03
- Zhou, S., Qiao, Z., Du, Q., Wang, G. A., Fan, W., and Yan, X. (2018). Measuring customer agility from online reviews using big data text analytics. Journal of Management Information Systems, 35(2), 510-539. https://doi.org/10.1080/07421222.2018.1451956