DOI QR코드

DOI QR Code

Effects of Aerobic Exercise and Chrysin Supplementation on Macrophage Infiltration and Lipolysis Genes of High-Fat Diet Mice

고지방식이 동물모델에서 크리신 섭취와 유산소 운동이 대식세포 침윤과 지방분해 유전자들에 미치는 영향

  • Received : 2019.03.25
  • Accepted : 2019.05.20
  • Published : 2019.05.28

Abstract

This study was investigated the effect of aerobic exercise and chrysin supplementation on macrophage infiltration and lipolysis in high-fat diet mice. To accomplish the purpose of this study, C57BL/6 mice were fed high fat diet(60% fat diet) during experimental period. The animals were divided into 4 groups; NC (normal diet control, n=5), HC (high fat diet control, n=5), Hch(high fat diet with chrysin, n=5), and HME (high fat diet with aerobic exercise training, n=5). Exercise training was performed for 16 weeks on a treadmill running. As a result, macrophage marker, F480 and CD11c were significantly decreased in HME comparison with HD and Hch. Also, M2 macrophage marker CD11c, and lipolysis marker PRDM were significantly increased in HME compared with HC and Hch These findings suggest that regular aerobic exercise has beneficial effects to inhibit macrophage infiltration in high fat diet mice.

본 연구 목적은 유산소운동과 크리신섭취가 고지방식이동물의 간 조직에서 비만억제 효과를 규명하는데 있다. 집단은 정상식이, 고지방식이, 고지방식이와 크리신섭취, 고지방식이와 유산소운동 4집단으로 하였다. 크리신은 체중당 50mg/kg을 구강투여 하였고, 유산소운동은 트레드밀운동으로 주5회 60분 16주간 실시하였다. SPSS(20.0)프로그램을 이용해 일원변량분석(One-way ANOVA)을 하였고, 사후분석은 LSD로 하였다. 연구결과 간 조직에서 대식세포 마커 F480와 M1대식세포 마커 CD11c는 정상식이 그룹과 비교해 고지방식이, 크리신투여 그룹에서 유의하게 증가했고 운동집단에서는 유의하게 감소하였다. 지방분해 마커 PRDM은 정상식이집단과 비교해 고지방식이, 크리신투여 집단에서 유의하게 감소했으나 운동집단에서만 유의하게 증가하였다. 결론적으로 고지방식이와 중강도 운동은 간 조직에서 발생되는 대사적불균형을 억제하는데 효과적인 것으로 나타났다. 하지만 고지방식이와 크리신 섭취는 비만억제 기능이 미비한 것으로 나타났다. 따라서 향후 기능성식품을 이용한 비만개선 연구는 투여용량, 기간 등을 고려해 다양한 분자적 기전을 살펴보는 연구가 보강되어야 할 것이다.

Keywords

DJTJBT_2019_v17n5_399_f0001.png 이미지

Fig. 1. Effect of aerobic exercise and chrysin supplementation on macrophage marker in liver (A) F480 mRNA (B) Representative microphotograph of hemat oxylin and eosin(H&E) staining from mice on each of the four groups.

DJTJBT_2019_v17n5_399_f0002.png 이미지

Fig. 2. Effect of aerobic exercise and chrysin supplementation on M1, M2 marker in liver.

DJTJBT_2019_v17n5_399_f0003.png 이미지

Fig. 3. Effect of aerobic exercise and chrysin supplementation on lipolysis marker in liver.

Table 1. Primer sequences used for RT-PCR

DJTJBT_2019_v17n5_399_t0001.png 이미지

Table 2. Change of F480 mRNA

DJTJBT_2019_v17n5_399_t0002.png 이미지

Table 3. Change of CD11c, CD206 mRNA

DJTJBT_2019_v17n5_399_t0003.png 이미지

Table 4. Change of PRDM, PPAR-α mRNA

DJTJBT_2019_v17n5_399_t0004.png 이미지

References

  1. F. B. Hu, W. C. Willett, T. Li, M. J. Stampfer, G. A. Colditz & J. E.Manson. (2004). Adiposity compared with physical activity in predicting mortality among women. N Engl J Med, 351, 2694-2703. https://doi.org/10.1056/NEJMoa042135
  2. K. D. Kistler. (2011). Physical activity recommen dations, exercise intensity, and histological seve rity of nonalcoholic fatty liver disease. Am J Gastroenterol, 106, 460-468. https://doi.org/10.1038/ajg.2010.488
  3. A. J. Sanyal. (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenteroogy, 120, 1183-1192. https://doi.org/10.1053/gast.2001.23256
  4. J. Y. Lee et al. (2007). Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: a review of 589 consecutive liver biopsies in a single center. J Hepatol, 47, 239-244. https://doi.org/10.1016/j.jhep.2007.02.007
  5. S. P. Weisberg et al. (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation, 112(12), 1796-1808. https://doi.org/10.1172/JCI200319246
  6. C. N. Lumeng, J. B. DelProposto, D. J. Westcott & A. R. Saltiel. (2008). Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 57(12), 3239-3246. https://doi.org/10.2337/db08-0872
  7. C. N. Lumeng, J. L. Bodzin & A. R. Saltiel. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation, 117(1), 175-184. https://doi.org/10.1172/JCI29881
  8. Y. R. Lee, H. G. Park, H. Y. Jang, S. K. Lee & M. H. Kim. (2014). The Effect of Endurance Exercise Training on Inflammatory Cytokines, Apoptosis, and FOXO Expression in Adipose Tissue of Hypertensive Rats. Exercise Science, 23(2), 89-98. https://doi.org/10.15857/ksep.2014.23.2.89
  9. J. H. Jeong, Y. R. Lee, W. L. Lee & H. G. Park. (2015). Moderate exercise training inhibits lipid metabolism and macrophage infiltration in high fat diet induced obese mice. Exercise Science 24(2), 161-167. https://doi.org/10.15857/ksep.2015.24.2.161
  10. J. E. Juan. (2017). Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules, 28, 23(1).
  11. H. Cho. (2004). Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res, 49, 37-43. https://doi.org/10.1016/S1043-6618(03)00248-2
  12. McCarthy, R. Charles & Pdentiality. (2016). The Protection of Personal Data in Epidem iological and Clinical Research Trials." Law, Medicine and Health Care, 19(3-4), 238-241. https://doi.org/10.1111/j.1748-720x.1991.tb01820.x
  13. A. Blalock & H. B. Taussig. (1945). The surg ical treatment of malformations of the heart. Journal of the American Medical Association, 128, 189-202. https://doi.org/10.1001/jama.1945.02860200029009
  14. A. Blalock. (1946). The surgical treatment of co ngenital pulmonic stenosis. Annuals of surgery, 124, 879-888. https://doi.org/10.1097/00000658-194611000-00005
  15. J. A. Williams et al. (2007). Two thousand Bl alock-Taussig shunts: a six-decade experience. Ann Thorac Surg, 84, 2070-5; discussion-5. https://doi.org/10.1016/j.athoracsur.2007.06.067
  16. Ministry of Food and Drug Safety. (2016). Enforcement Rule of the Animal Protection Act. Ministry of Food and Drug Safety.
  17. V. Schefer & M. I. Talan. (1996). Oxygen con sumption in adult and aged C57BL/6J mice during acute treadmill exercise of different intensity. The Journal of Gerontol, 31(3), 387-392.
  18. O. Ciftci, I. Ozdemir, M. Aydin, & A. Beytur. (2012). Beneficial effects of chrysin on the reproductive system of adult male rats, Andrologia, 44(3), 181-186. https://doi.org/10.1111/j.1439-0272.2010.01127.x
  19. C. A. Matteoni. (1999). Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology, 116, 1413-1419. https://doi.org/10.1016/S0016-5085(99)70506-8
  20. G. Musso & M. Cassader. (2012). Gambino Di agnostic accuracy of adipose insulin resistance index and visceral adiposity index for pro gressive liver histology and cardiovascular risk in nonalcoholic fatty liver disease. Hepatology, 56, 788-9. https://doi.org/10.1002/hep.25677
  21. Y. B. Lee. (2013). The Effect of Mulberry Leaf Extract on Blood biochemical parameters in White Rats Exposed to 2,3,7,8-tetrachlorodib enzo-pdioxin(TCDD). Journal of Digital Convert gence, 11(1), 299-308.
  22. J. Kim. (2014). Antibacter ial and anti-inflam matory effects of Platycodon grandiflorum extracts Journal of Digital Convergence, 12(3), 359-366. https://doi.org/10.14400/JDC.2014.12.3.359
  23. A. Y. Jang, Y. C. Sueng & J. G. Ji. (2016). The comparative study on physiological activity of White ginseng, Red ginseng and Black ginseng extract. Journal of Digital Convergence, 14(5), 459-471. https://doi.org/10.14400/JDC.2016.14.5.459
  24. M. S. Kim, S. H. Park & H. R. Park. (2016). Convergence Studies Vascular Relaxation and Safty Evaluation in Viscum Coloratumma, Chry santheum Morifolium, Citri Percarpium, and Ophiopoginis Radix Mixture. Journal of Digital Convergence, 14(9), 479-484. https://doi.org/10.14400/JDC.2016.14.9.479
  25. S. H. Park, B. J. Park & H. R. Park. (2016). Studies on Nutritional Analysis and Antioxidant activity of Oriental Medicines with Bloodstream Improvement. Journal of Digital Convergence, 14(10), 563-570. https://doi.org/10.14400/JDC.2016.14.10.563
  26. N. Kawanishi, H. Yano, Y. Yoogawa & K. Suzuki.(2010). Exercise training inhibits infla mmation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 mac rophages in high-fat-diet induced obese mice. Exerc Immunol Rev, 16, 105-118.
  27. Y. R. Lee, S. M. Kwon, A. R. Yoon, K. E. Min & W. L. Lee, (2013). Effects of either aerobic exercise training or quercetin supplementation with a low-fat diet on lipid metabolism, mitochondrial biogenesis, and inflammatory cytokine in skeletal muscle of high fat diet-induced obese mice. Exercise Science, 22(2), 113-123. https://doi.org/10.15857/ksep.2013.22.2.113
  28. J. A. Baur et al. (2006). Resveratrol improves health and survival of mice on high-calorie diet. Nature, 444(7117), 337-342. https://doi.org/10.1038/nature05354
  29. I. Erlund. (2004). Review of the flavinoids quercetin, hesperetin, and naringenin. Dietary sources, bio activities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851-874. https://doi.org/10.1016/j.nutres.2004.07.005
  30. A. I. Tamer, M. S. Mohamed, N. Abdo & I. M. Dalla. (2015). Antihypercholesterolemic effe cts of mushroom, chrysin, curcumin and ome ga-3 in experimental hypercholesterolemic rats. Journal of Food and Nutrition Research, 3(2), 77-87. https://doi.org/10.12691/jfnr-3-2-1
  31. M. Lagouge. et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127, 1109-22 https://doi.org/10.1016/j.cell.2006.11.013
  32. V. J. Vieira, R. J. Valentine, K. R. Wilund, N. Antao, T. Baynard & J. A. Woods. (2009). Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am. J. Physiol. Endocrinol. Metab, 296, E1164-E1171. https://doi.org/10.1152/ajpendo.00054.2009
  33. M. Fortez et al. (2005). Short-term over express ion of a constitutively active form of AMPK- activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes, 54, 1331-1339. https://doi.org/10.2337/diabetes.54.5.1331