Fig. 1. Effect of STB and STL on the cell growth in SW480 and A549 cells. (A and B) Cell growth was evaluated by MTT assay at 24 h after STB and STL treatment. *p < 0.05 compared to cell without STB and STB.
Fig. 2. Effect of STB and STB on β-catenin expression in SW480 and A549 cells. (A and B) A549 and SW480 cells were treated with STB and STL at the indicated concentrations for 24 h. Western blot and RT-PCR analysis was performed against β-catenin. Actin and GAPDH were used as internal controls for Western blot and RT-PCR, respectively. *p < 0.05 compared to cell without STB and STL.
Fig. 3. Effect of STB and STL on β-catenin proteasomal degradation in SW480 and A549 cells. (A and B) SW480 and A549 cells were pretreat with 20 μM of MG132 for 2 h and then co-treated with STB and STL for 12 h. Western blot analysis was performed against β- catenin. Actin was used as an internal control. *p < 0.05 compared to cell without STB and STL.
Fig. 4. Effect of GSK3β or ROS on β-catenin proteasomal degradation induced by STB and STL in SW480 and A549 cells. (A and B) SW480 and A549 cells were pretreated with 20 mM of LiCl or 10 mM of NAC for 2 h and then co-treated with STB and STL for 12 h. After the treatment, Western blot analysis was performed against β-catenin. Actin was used as internal control. *p < 0.05 compared to cell without STB and STL.
Table 1. Sequence of oligonucleotide primers used for RT-PCR
References
- Chitalia, V., S. Shivanna, J. Martorell, R. Meyer, E. Edelman and N. Rahimi. 2013. c-Cbl, a ubiquitin E3 ligase that targets active beta-catenin: a novel layer of Wnt signaling regulation. J. Biol. Chem. 288:23505-23517. https://doi.org/10.1074/jbc.M113.473801
- Chung, S.K., C.Y. Chen and J.B. Blumberg. 2009. Flavonoidrich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J Med Food. 12:1310-1315. https://doi.org/10.1089/jmf.2008.1309
-
Damsky, W.E., D.P. Curley, M. Santhanakrishnan, L.E. Rosenbaum, J.T. Platt, B.E. Gould Rothberg, M.M. Taketo, D. Dankort, D.L. Rimm, M. McMahon and M. Bosenberg. 2011.
${\beta}$ -Catenin signaling controls metastasis in Brafactivated Pten-deficient melanomas. Cancer Cell 20:741-754. https://doi.org/10.1016/j.ccr.2011.10.030 -
Gekas, C., T. D’Altri, R. Aligue, J. Gonzalez, L. Espinosa and A. Bigas. 2016.
${\beta}$ -Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30:2002-2010. https://doi.org/10.1038/leu.2016.106 - Hyun, T.K., S.C. Song, C.K. Song and J.S. Kim. 2015. Nutritional and nutraceutical characteristics of Sageretia theezans fruit. J. Food Drug Anal. 23:742-749. https://doi.org/10.1016/j.jfda.2015.04.006
- Johnson, V., E. Volikos, S.E. Halford, E.T. Eftekhar Sadat, S. Popat, I. Talbot, K. Truninger, J. Martin, J. Jass, R. Houlston, W. Atkin, I.P. Tomlinson and A.R. Silver. 2005. Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 54:264-267. https://doi.org/10.1136/gut.2004.048132
- Khramtsov, A.I., G.F. Khramtsova, M. Tretiakova, D. Huo, O.I. Olopade and K.H. Goss. 2010. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176:2911-2920. https://doi.org/10.2353/ajpath.2010.091125
-
Kim, B. and H.S. Kim. 2016. Effect of Wnt/
${\beta}$ -catenin pathway of methanol extracts from native plants in Korea. Korean J. Plant Res. 29:620-624. https://doi.org/10.7732/kjpr.2016.29.5.620 - Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Song, J.H. Song and J.B. Jeong. 2019. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complement. Altern. Med. 19:43. https://doi.org/10.1186/s12906-019-2453-4
- Ko, G.A., M. Son and S.K. Cho. 2016. Comparative evaluation of free radical scavenging activities and cytotoxicity of various solvent fractions of Sandong Sageretia thea (Osbeck) M.C. Johnst. Branches. Food Sci. Biotechnol. 25:1683-1691. https://doi.org/10.1007/s10068-016-0259-4
- Ko, G.A., S. Shrestha and C.S. Kim. 2018. Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3beta signaling pathway. Nutr. Res. Pract. 12:3-12. https://doi.org/10.4162/nrp.2018.12.1.3
- Kobayashi, M., T. Honma, Y. Matsuda, Y. Suzuki, R. Narisawa, Y. Ajioka and H. Asakura. 2000. Nuclear translocation of beta-catenin in colorectal cancer. Br. J. Cancer. 82:1689-1693. https://doi.org/10.1054/bjoc.1999.1112
- Kypta, R.M. and J. Waxman. 2012. Wnt/beta-catenin signalling in prostate cancer. Nat. Rev. Urol. 9:418-428. https://doi.org/10.1038/nrurol.2012.116
- Li, V.S., S.S. Ng, P.J. Boersema, T.Y. Low, W.R. Karthaus, J.P. Gerlach, S. Mohammed, A.J. Heck, M.M. Maurice, T. Mahmoudi and H. Clevers. 2012. Cell 49:1245-1256.
- MacDonald, B.T., K. Tamai and X. He. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9-26. https://doi.org/10.1016/j.devcel.2009.06.016
- Morin, P.J., A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein and K.W. Kinzler. 1997. Activation of betacatenin-Tcf signaling in colon cancer by mutations in betacatenin or APC. Science 275:1787-1790. https://doi.org/10.1126/science.275.5307.1787
-
Omori, E., K. Matsumoto and J. Ninomiya-Tsuji. 2011. Noncanonical
${\beta}$ -catenin degradation mediates reactive oxygen species-induced epidermal cell death. Oncogene 30:3336-3344. https://doi.org/10.1038/onc.2011.49 - Park, J.C., J.M. Hur, J.G. Park, T. Hatano, T. Yoshida, H. Miyashiro, B.S. Min and M. Hattori. 2002. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 16:422-426. https://doi.org/10.1002/ptr.919
- Reya, T. and H. Clevers. 2005. Wnt signalling in stem cells and cancer. Nature 434:843-850. https://doi.org/10.1038/nature03319
-
Shang, S., F. Hua and Z.W. Hu. 2017. The regulation of
${\beta}$ -catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972-33989. https://doi.org/10.18632/oncotarget.15687 - Tao, J., D.F. Calvisi, S. Ranganathan, A. Cigliano, L. Zhou, S. Singh, L. Jiang, B. Fan, L. Terracciano, S. Armeanu-Ebinger, S. Ribback, F. Dombrowski, M. Evert, X. Chen and S.P.S. Monga. 2014. Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147:690-701. https://doi.org/10.1053/j.gastro.2014.05.004
- Valkenburg, K.C., C.R. Graveel, C.R. Zylstra-Diegel, Z. Zhong and B.O. Williams. 2011. Wnt/beta-catenin Signaling in Normal and Cancer Stem Cells. Cancers 3:2050-2079. https://doi.org/10.3390/cancers3022050
-
Watson, A.L., E.P. Rahrmann, B.S. Moriarity, K. Choi, C.B. Conboy, A.D. Greeley, A.L. Halfond, L.K. Anderson, B.R. Wahl, V.W. Keng, A.E. Rizzardi, C.L. Forster, M.H. Collins, A.L. Sarver, M.R. Wallace, S.C. Schmechel, N. Ratner and D.A. Largaespada. 2013. Canonical Wnt/
${\beta}$ -catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov. 3:674-689. https://doi.org/10.1158/2159-8290.CD-13-0081 - White, B.D., A.J. Chien and D.W. Dawson. 2012. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219-232. https://doi.org/10.1053/j.gastro.2011.12.001
- Xue, J., Y. Chen, Y. Wu, Z. Wang, A. Zhou, S. Zhang, K. Lin, K. Aldape, S. Majumder, Z. Lu and S. Huang. 2015. Tumour suppressor TRIM33 targets nuclear beta-catenin degradation. Nat. Commun. 6:6156. https://doi.org/10.1038/ncomms7156
-
Yu, S., Z. Wang, Z. Su, J. Song, L. Zhou, Q. Sun, S. Liu, S. Li, Y. Li, M. Wang, G.Q. Zhang, X. Zhang, Z.J. Liu and D. Lu. 2018. Gigantol inhibits Wnt/
${\beta}$ -catenin signaling and exhibits anticancer activity in breast cancer cells. BMC Complement. Altern. Med. 18:59. https://doi.org/10.1186/s12906-018-2108-x