DOI QR코드

DOI QR Code

Effect of the Extracts from the Leaves and Branches of Sageretia thea on β-catenin Proteasomal Degradation in Human Colorectal and Lung Cancer Cells

상동나무(Sageretia thea) 잎과 가지추출물의 대장암과 폐암세포의 β-catenin 분해 유도 활성

  • Kim, Ha Na (Department of Medicinal Plant Resources, Andong National University) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kim, Jeong Dong (Department of Medicinal Plant Resources, Andong National University) ;
  • Park, Su Bin (Department of Medicinal Plant Resources, Andong National University) ;
  • Eo, Hyun Ji (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
  • 김하나 (국립안동대학교 생약자원학과, 대학원) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소) ;
  • 김정동 (국립안동대학교 생약자원학과, 대학원) ;
  • 박수빈 (국립안동대학교 생약자원학과, 대학원) ;
  • 어현지 (국립산림과학원 산림약용자원연구소) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2019.03.06
  • Accepted : 2019.04.18
  • Published : 2019.04.30

Abstract

In this study, we evaluated the effect of branch (STB) and leave (STL) extracts from Sageretia thea on ${\beta}-catenin$ level in human colorecal cancer cells, SW480 and lung cancer cells, A549. STB and STL dose-dependently suppressed the growth of SW480 and A549 cells. STB and STL decreased ${\beta}-catenin$ level in both protein and mRNA level. MG132 decreased the downregulation of ${\beta}-catenin$ protein level induced by STB and STL. However, the inhibition of $GSK3{\beta}$ by LiCl or ROS scavenging by NAC did not block the reduction of ${\beta}-catenin$ protein by STB and STL. Our results suggested that STB and STL may downregulate ${\beta}-catenin$ protein level independent on $GSK3{\beta}$ and ROS. Based on these findings, STB and STL may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer and lung cancer.

이상의 연구 결과로 미루어 볼 때, 상동나무 가지 (STB)와 잎(STL)은 $GSK3{\beta}$와 ROS에 의존하지 않는 ${\beta}-catenin$의 분해 유도를 통해 대장암 및 폐암세포의 생육을 억제하는 것으로 나타났다. 본 결과는 상동나무 가지와 잎의 항암을 위한 대체보완소재 및 천연 항암제 개발을 위한 소재로 활용이 가능할 것으로 판단된다. 그러나 추가적 연구를 통해 상동나무 가지와 잎의 ${\beta}-catenin$의 분해 유도 관련 기전연구와 항암 활성물질의 분석연구가 필요할 것으로 사료된다.

Keywords

JOSMBA_2019_v32n2_153_f0001.png 이미지

Fig. 1. Effect of STB and STL on the cell growth in SW480 and A549 cells. (A and B) Cell growth was evaluated by MTT assay at 24 h after STB and STL treatment. *p < 0.05 compared to cell without STB and STB.

JOSMBA_2019_v32n2_153_f0002.png 이미지

Fig. 2. Effect of STB and STB on β-catenin expression in SW480 and A549 cells. (A and B) A549 and SW480 cells were treated with STB and STL at the indicated concentrations for 24 h. Western blot and RT-PCR analysis was performed against β-catenin. Actin and GAPDH were used as internal controls for Western blot and RT-PCR, respectively. *p < 0.05 compared to cell without STB and STL.

JOSMBA_2019_v32n2_153_f0003.png 이미지

Fig. 3. Effect of STB and STL on β-catenin proteasomal degradation in SW480 and A549 cells. (A and B) SW480 and A549 cells were pretreat with 20 μM of MG132 for 2 h and then co-treated with STB and STL for 12 h. Western blot analysis was performed against β- catenin. Actin was used as an internal control. *p < 0.05 compared to cell without STB and STL.

JOSMBA_2019_v32n2_153_f0004.png 이미지

Fig. 4. Effect of GSK3β or ROS on β-catenin proteasomal degradation induced by STB and STL in SW480 and A549 cells. (A and B) SW480 and A549 cells were pretreated with 20 mM of LiCl or 10 mM of NAC for 2 h and then co-treated with STB and STL for 12 h. After the treatment, Western blot analysis was performed against β-catenin. Actin was used as internal control. *p < 0.05 compared to cell without STB and STL.

Table 1. Sequence of oligonucleotide primers used for RT-PCR

JOSMBA_2019_v32n2_153_t0001.png 이미지

References

  1. Chitalia, V., S. Shivanna, J. Martorell, R. Meyer, E. Edelman and N. Rahimi. 2013. c-Cbl, a ubiquitin E3 ligase that targets active beta-catenin: a novel layer of Wnt signaling regulation. J. Biol. Chem. 288:23505-23517. https://doi.org/10.1074/jbc.M113.473801
  2. Chung, S.K., C.Y. Chen and J.B. Blumberg. 2009. Flavonoidrich fraction from Sageretia theezans leaves scavenges reactive oxygen radical species and increases the resistance of low-density lipoprotein to oxidation. J Med Food. 12:1310-1315. https://doi.org/10.1089/jmf.2008.1309
  3. Damsky, W.E., D.P. Curley, M. Santhanakrishnan, L.E. Rosenbaum, J.T. Platt, B.E. Gould Rothberg, M.M. Taketo, D. Dankort, D.L. Rimm, M. McMahon and M. Bosenberg. 2011. ${\beta}$-Catenin signaling controls metastasis in Brafactivated Pten-deficient melanomas. Cancer Cell 20:741-754. https://doi.org/10.1016/j.ccr.2011.10.030
  4. Gekas, C., T. D’Altri, R. Aligue, J. Gonzalez, L. Espinosa and A. Bigas. 2016. ${\beta}$-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30:2002-2010. https://doi.org/10.1038/leu.2016.106
  5. Hyun, T.K., S.C. Song, C.K. Song and J.S. Kim. 2015. Nutritional and nutraceutical characteristics of Sageretia theezans fruit. J. Food Drug Anal. 23:742-749. https://doi.org/10.1016/j.jfda.2015.04.006
  6. Johnson, V., E. Volikos, S.E. Halford, E.T. Eftekhar Sadat, S. Popat, I. Talbot, K. Truninger, J. Martin, J. Jass, R. Houlston, W. Atkin, I.P. Tomlinson and A.R. Silver. 2005. Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 54:264-267. https://doi.org/10.1136/gut.2004.048132
  7. Khramtsov, A.I., G.F. Khramtsova, M. Tretiakova, D. Huo, O.I. Olopade and K.H. Goss. 2010. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176:2911-2920. https://doi.org/10.2353/ajpath.2010.091125
  8. Kim, B. and H.S. Kim. 2016. Effect of Wnt/${\beta}$-catenin pathway of methanol extracts from native plants in Korea. Korean J. Plant Res. 29:620-624. https://doi.org/10.7732/kjpr.2016.29.5.620
  9. Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Song, J.H. Song and J.B. Jeong. 2019. Extracts from Sageretia thea reduce cell viability through inducing cyclin D1 proteasomal degradation and HO-1 expression in human colorectal cancer cells. BMC Complement. Altern. Med. 19:43. https://doi.org/10.1186/s12906-019-2453-4
  10. Ko, G.A., M. Son and S.K. Cho. 2016. Comparative evaluation of free radical scavenging activities and cytotoxicity of various solvent fractions of Sandong Sageretia thea (Osbeck) M.C. Johnst. Branches. Food Sci. Biotechnol. 25:1683-1691. https://doi.org/10.1007/s10068-016-0259-4
  11. Ko, G.A., S. Shrestha and C.S. Kim. 2018. Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3beta signaling pathway. Nutr. Res. Pract. 12:3-12. https://doi.org/10.4162/nrp.2018.12.1.3
  12. Kobayashi, M., T. Honma, Y. Matsuda, Y. Suzuki, R. Narisawa, Y. Ajioka and H. Asakura. 2000. Nuclear translocation of beta-catenin in colorectal cancer. Br. J. Cancer. 82:1689-1693. https://doi.org/10.1054/bjoc.1999.1112
  13. Kypta, R.M. and J. Waxman. 2012. Wnt/beta-catenin signalling in prostate cancer. Nat. Rev. Urol. 9:418-428. https://doi.org/10.1038/nrurol.2012.116
  14. Li, V.S., S.S. Ng, P.J. Boersema, T.Y. Low, W.R. Karthaus, J.P. Gerlach, S. Mohammed, A.J. Heck, M.M. Maurice, T. Mahmoudi and H. Clevers. 2012. Cell 49:1245-1256.
  15. MacDonald, B.T., K. Tamai and X. He. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9-26. https://doi.org/10.1016/j.devcel.2009.06.016
  16. Morin, P.J., A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein and K.W. Kinzler. 1997. Activation of betacatenin-Tcf signaling in colon cancer by mutations in betacatenin or APC. Science 275:1787-1790. https://doi.org/10.1126/science.275.5307.1787
  17. Omori, E., K. Matsumoto and J. Ninomiya-Tsuji. 2011. Noncanonical ${\beta}$-catenin degradation mediates reactive oxygen species-induced epidermal cell death. Oncogene 30:3336-3344. https://doi.org/10.1038/onc.2011.49
  18. Park, J.C., J.M. Hur, J.G. Park, T. Hatano, T. Yoshida, H. Miyashiro, B.S. Min and M. Hattori. 2002. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 16:422-426. https://doi.org/10.1002/ptr.919
  19. Reya, T. and H. Clevers. 2005. Wnt signalling in stem cells and cancer. Nature 434:843-850. https://doi.org/10.1038/nature03319
  20. Shang, S., F. Hua and Z.W. Hu. 2017. The regulation of ${\beta}$-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972-33989. https://doi.org/10.18632/oncotarget.15687
  21. Tao, J., D.F. Calvisi, S. Ranganathan, A. Cigliano, L. Zhou, S. Singh, L. Jiang, B. Fan, L. Terracciano, S. Armeanu-Ebinger, S. Ribback, F. Dombrowski, M. Evert, X. Chen and S.P.S. Monga. 2014. Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147:690-701. https://doi.org/10.1053/j.gastro.2014.05.004
  22. Valkenburg, K.C., C.R. Graveel, C.R. Zylstra-Diegel, Z. Zhong and B.O. Williams. 2011. Wnt/beta-catenin Signaling in Normal and Cancer Stem Cells. Cancers 3:2050-2079. https://doi.org/10.3390/cancers3022050
  23. Watson, A.L., E.P. Rahrmann, B.S. Moriarity, K. Choi, C.B. Conboy, A.D. Greeley, A.L. Halfond, L.K. Anderson, B.R. Wahl, V.W. Keng, A.E. Rizzardi, C.L. Forster, M.H. Collins, A.L. Sarver, M.R. Wallace, S.C. Schmechel, N. Ratner and D.A. Largaespada. 2013. Canonical Wnt/${\beta}$-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discov. 3:674-689. https://doi.org/10.1158/2159-8290.CD-13-0081
  24. White, B.D., A.J. Chien and D.W. Dawson. 2012. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology 142:219-232. https://doi.org/10.1053/j.gastro.2011.12.001
  25. Xue, J., Y. Chen, Y. Wu, Z. Wang, A. Zhou, S. Zhang, K. Lin, K. Aldape, S. Majumder, Z. Lu and S. Huang. 2015. Tumour suppressor TRIM33 targets nuclear beta-catenin degradation. Nat. Commun. 6:6156. https://doi.org/10.1038/ncomms7156
  26. Yu, S., Z. Wang, Z. Su, J. Song, L. Zhou, Q. Sun, S. Liu, S. Li, Y. Li, M. Wang, G.Q. Zhang, X. Zhang, Z.J. Liu and D. Lu. 2018. Gigantol inhibits Wnt/${\beta}$-catenin signaling and exhibits anticancer activity in breast cancer cells. BMC Complement. Altern. Med. 18:59. https://doi.org/10.1186/s12906-018-2108-x