DOI QR코드

DOI QR Code

Analysis of the Effect of Mordants on the Degradation of Alizarin in Silk Dyed with Natural Madder Dye

  • Li, Longchun (College of Textile and Garment, Hebei University of Science and Technology) ;
  • Ahn, Cheunsoon (Dept. of Fashion Industry, Incheon National University)
  • Received : 2018.12.11
  • Accepted : 2019.02.21
  • Published : 2019.04.30

Abstract

This research investigated the effect of mordants on the degradation of madder dye in silk when silk was treated by the H2O2/UV condition as a laboratory simulation of burial induced degradation. Alum, iron, and alum/iron composite mordanting methods were applied to silk before dyeing with madder dye. Dye extracted from silk was examined using HPLC-DAD-MS analysis. The abundance of the chromatogram peak at 8.88 min retention time was used as the concentration of alizarin pigment in silk. K/S values, CIE $L^{\ast}a^{\ast}b^{\ast}$ values; in addition, Munsell HVC values were obtained using a spectrocolorimeter. The findings indicated that alizarin degraded most severely in silk mordanted by alum/iron composite mordanting than alum mordanting or iron mordanting. Mordanting with alum alone provided a relatively lower dye fixation at the point of dyeing; however, it provided a better survival of alizarin after 12 hours of degradation treatment.

Keywords

References

  1. Abdel-Kareem, O., Alawi, M. A., & Mubarak, M. S. (2010). Identification of dyestuffs in a rare coptic garment using high performance liquid chromatography with photodiode array detection (HPLC-PDA). Journal of Textile and Apparel, Technology and Management, 6(3). Retrieved from http://ojs.cnr.ncsu.edu/index.php/JTATM/article/view/564
  2. Ahmed, H. E., & Darwish, S. S. (2012). Effect of museum conditions on historical dyed silk fabric with madder dye. Journal of Polymers and the Environment, 20(2), 596-606. doi:10.1007/s10924-012-0421-x
  3. Ahmed, N., Oulton, D. P., & Taylor, J. A. (2006). The use of reflectance measurements in the determination of fixation of reactive dyes to cotton. Color Research and Application, 31(2), 117-121. doi:10.1002/col.20189
  4. Ahn, C., & Obendorf, S. K. (2004). Dyes on archaeological textiles: Analyzing alizarin and its degradation products. Textile Research Journal, 74(11), 949-954. doi:10.1177/004051750407401102
  5. Ahn, C., Zeng, X., Li, L., & Obendorf, S. K. (2014). Thermal degradation of natural dyes and their analysis using HPLC-DAD-MS. Fashion and Textiles, 1:22. doi:10.1186/s40691-014-0022-5
  6. Ahn, C., Zeng, X., & Obendorf, S. K. (2012). Analysis of dye extracted from Phellodendron bark and its identification in archaeological textiles. Textile Research Journal, 82(16), 1645-1658. doi:10.1177/0040517511431316
  7. Ahn, C., Zeng, X., & Obendorf, S. K. (2015). High-performance liquid chromatography-diode array detector-mass selective detector analysis of major natural dyes with the application of $H_2O_2$/ultraviolet treatment as a way to simulate burial degradation of textiles. Textile Research Journal, 85(3), 238-250. doi:10.1177/0040517514545258
  8. Alizarin. (2018, October 24). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Alizarin
  9. Alum. (2018, November 17). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Alum
  10. Amin, H., Amer, A., Fechy, A. E., & Ibrahim, I. (2008). Treatment of textile waste water using $H_2O_2$/UV system. Physicochemical Problems of Mineral Processing, 42, 17-28.
  11. Bach, C. E., Warnock, D. D., Van Horn, D. J., Weintraub, M. N., Sinsabaugh, R. L., Allison, S. D., & German, D. P. (2013). Measuring phenol oxidase and peeroxidase activities with pyrogallol, L-DOPA, and ABTS: Effects of assay conditions and soil type. Soil Biology and Biochemistry, 67, 183-191. doi:10.1016/j.soilbio.2013.08.022
  12. Bhatt, P., & Kushwah, A. S. (2013). Rubia cordifolia overview: A new approach to treat cardiac disorders. International Journal of Drug Development & Research, 5 (2), 47-54.
  13. Chelation. (2018, November 17). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Chelation
  14. Chu, Y.-J. (2005). A study on the natural mordants in natural dyeing - Natural iron solution and alum -. Journal of the Korean Society of Costume, 55(6s), 45-50.
  15. Chu, Y. J., & Nam, S. W. (1997). A study on the natural mordants in natural dyeing(I) - Rise straw ash -. Journal of the Korean Society of Dyers and Finishers, 9(6), 33-41.
  16. Crews, P. C. (1982). The influence of mordant on the lightfastness of yellow natural dyes. Journal of the American Institute for Conservation, 21(2), 43-58. doi:10.1179/019713682806028559
  17. Doty, K., Haar, S., & Kim, J. (2016). Black walnut, osage orange and eastern redcedar sawmill waste as natural dyes: effect of aluminum mordant on color parameters. Fashion and Textiles, 3:22. doi:10.1186/s40691-016-0074-9
  18. Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2017). Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6(1), e00394. doi:10.1002/mbo3.394
  19. Ford, L., Rayner, C. M., & Blackburn, R. S. (2015). Isolation and extraction of ruberythric acid from Rubia tinctorum L. and crystal structure elucidation. Phytochemistry, 117, 168-173. doi:10.1016/j.phytochem.2015.06.015
  20. Ford, L, Rayner, C. M., & Blackburn, R. S. (2017). Comparative sorption isotherms for colorants present in Dyers' madder (Rubia tinctorum L.) provide new insights into historical dyeing. Coloration Technology, 134(1), 3-12. doi:10.1111/cote.12327
  21. Hisaindee, S., Meetani, M. A., & Rauf, M. A. (2013). Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reation mechanisms. TrAC Trends in Analytical Chemistry, 49, 31-44. doi:10.1016/j.trac.2013.03.011
  22. Hofenk de Graaff, J. H., Roelofs, W. G. Th., & van Bommel, M. R. (2004). The colourful past: Origins, chemistry and identification of natural dyestuffs. London: Archetype Publications, Ltd.
  23. Hossain, K., Quaik, S., Ismail, N., Rafatullah, M., Avasan, M., & Shaik, R. (2016). Bioremediation and detoxification of the textile wastewater with membrane bioreactor using the white-rot fungus and reuse of wastewater. Iranian Journal of Biotechnology, 14(3):e1216, 154-162. doi:10.15171/ijb.1216
  24. Karimi, S., Abdulkhani, A., Karimi, A., Ghazali, A. H. B., & Ahmadun, F.-R. (2010). The effect of combination enzymatic and advanced oxidation process treatments on the colour of pulp and paper mill effluent. Environmental Technology, 31(4), 347-356. doi:10.1080/09593330903473861
  25. Khan, S. A., Ahmad, A., Khan, M. I., Yusuf, M., Shahid, M., Manzoor, N., & Mohammad, F. (2012). Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb). Dyes and Pigments, 95(2), 206-214. doi:10.1016/j.dyepig.2012.04.010
  26. Korean Agency for Technology and Standards. (2015). KS K 0905 Standard adjacent fabrics for colour fastness test. Korean Standards & Certifications. Retrieved from https://www.standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=503&topMenuId=502&ksNo=KSK0905&tmprKsNo=KSK0905&reformNo=10
  27. Lee, B. (2010). Imwonkyungjaeji-Jeonggongji-Dongyeom. Conservation Science in Museum, 11, 73-82.
  28. Lim, J. Y., & Jang, J. D. (2013). Dye extraction and silk dyeing of Rubia cordifolia using solvents. Journal of the Korean Society of Clothing and Textiles, 37(4), 506-513. doi:10.5850/JKSCT.2013.37.4.506
  29. Nam, S. W. (2000). 천연염색의 이론과 실제 (1) [Theory and practice of natural dyeing (1)]. Seoul: Boseongmunhwasa.
  30. Needles, H. L., Cassman, V., & Collins, M. J. (1986). Mordanted, natural-dyed wool and silk fabrics: Light and burial-induced changes in the color and tensile properties. In H. L. Needles & S. H. Zeronian (Eds.), Historic textile and paper materials: Conservation and characterization. Advanced in Chemistry Series, Vol. 212 (pp. 199-210). Washington, DC: American Chemical Society.
  31. Padfield, T., & Landi, S. (1966). The light-fastness of the natural dyes. Studies in Conservation, 11(4), 181-196. doi: 10.2307/1505361
  32. Park, W. J., Kim, K. S., Kim, S. D., Park, J. H., & Koh, J. (2007). Korean traditional red dyeing and characterization of its color properties by investigating old documents (II)-Repeated dyeing-. Textile Science and Engineering, 44(6), 301-311.
  33. Perkin, A. G., & Everest, A. E. (1918). The natural organic colouring matters. London: Longmans, Green and Co.
  34. Petigara, B. R., Blough, N. V., & Mignerey, A. C. (2002). Mechanisms of hydrogen peroxide decomposition in soils. Environmental Science & Technology, 36(4), 639-645. doi:10.1021/es001726y
  35. Repon, R., Islam, M. T., & Mamun A. A. (2016). Promising effect of metallic mordants on colorimetric physiognomy of dyed cotton fabric employing banana (Musa Sapientum) agricultural waste. Chemical and Materials Engineering, 4(3), 39-45. doi:10.13189/cme.2016.040302
  36. Sadi, S., & Hossain, J. (2017, January 23). Measurement of the relationship between shade (%), reflectance (%) and color strength (K/S). Textile Today. Retrieved from https://www.textiletoday.com.bd/measurement-relationship-shade-reflectance-color-strength-ks/
  37. Samanta, A. K., & Konar, A. (2011). Dyeing of textiles with natural dyes. IntechOpen: Natural Dyes. Retrieved from https://www.intechopen.com/books/natural-dyes/dyeing-of-textiles-with-natural-dyes
  38. Seo, H. Y., Kim, H. R., & Song, W. S. (2011). Effects of Chestnut hulls mordant on Oenothera Odorata Jacquindyed fabrics. Journal of the Korean Society for Clothing Industry, 13(6), 983-989. doi:10.5805/KSCI.2011.13.6.983
  39. Sisubalan, N., Kolar, A. B., & Basha, M. H. G. (2015). Assessment of alizarin, purpurin and genetic fidelity of Rubia cordifolia L. from Eastern Ghats of Tamil Nadu, India. International Journal of Pharma and Bio Sciences, 6(1), B1112-B1122.
  40. Tian, L., & Shi, W. (2014). Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biology and Fertility of Soils, 50(5), 785-794. doi:10.1007/s00374-014-0903-1
  41. Timar-Balazsy, A., & Eastop, D. (2012). Chemical principles of textile conservation. Google: Books. Retrieved from https://books.google.co.kr/books?id=UtUrBgAAQBAJ&pg=PA72&lpg=PA72&dq=alizarin+hydrogen+bond+to+protein+fiber&source=bl&ots=s9NAYw0Ce4&sig=Mbh25odeHFquveSENZkY3XulkH8&hl=ko&sa=X&ved=2ahUKEwiVndD6y4ffAhUCOrwKHZ6TDzgQ6AEwCXoECAUQAQ#v=onepage&q=alizarin%20hydrogen%20bond%20to%20protein%20fiber&f=false
  42. Vasina, D. V., Moiseenko, K. V., Fedorova, T. V., & Tyazhelova, T. V. (2017). Lignin-degrading peroxidases in whiterot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS ONE, 12 (3), e0173813. doi:10.1371/journal.pone.0173813
  43. Yatagai, M., Magoshi, Y., Becker, M. A., Sano, C., Ikuno, H., Kohara, N., & Saito, M. (2001). Degradation and color fading of silk fabrics dyed with natural dyes and mordants. In J. M. Cardamone & M. T. Baker (Eds.), Historic textiles, papers, and polymers in museums. ACS Symposium Series, Vol. 779 (pp. 86-97). Washington, DC: American Chemical Society.
  44. Yean, M. H. (2015). The study of obangan colors of the clothing of the Joseon dynasty. Journal of the Korean Society of Fashion Design, 15(2), 165-179.
  45. Yi, B. (1975). 閨閤叢書 [Gyuhap Chongseo] (Y. W. Chung, Trans.). Seoul: PoChinChai. (Original work published 1809)
  46. Zarkogianni, M., Papliaka, Z.-E., & Tsatsaroni, E. (2009). Identification and quantitative determination of madder by high performance liquid chromatography: Application to historical textiles. Journal of Liquid Chromatography & Related Technologies, 32(16), 2334-2345. doi: 10.1080/10826070903187874
  47. Zhang, X., & Laursen, R. A. (2005). Development of mild extraction methods for the analysis of natural dyes in textiles of historical interest using LC-diode array detector-MS. Analytical Chemistry, 77(7), 2022-2025. doi:10.1021/ac048380k