DOI QR코드

DOI QR Code

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Vahdani, Shahram (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Rahimian, Mohammad (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Jamshidi, Nima (School of Civil Engineering, College of Engineering, University of Tehran) ;
  • Kanee, Alireza Taghavee (School of Civil Engineering, College of Engineering, University of Tehran)
  • Received : 2018.03.14
  • Accepted : 2019.02.19
  • Published : 2019.05.10

Abstract

This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Keywords

References

  1. Allemang, R.J. (2003), "The modal assurance criterion-twenty years of use and abuse", Sound Vibr., 37(8), 14-23.
  2. Aote, S.S., Raghuwanshi, M. and Malik, L. (2013), "A brief review on particle swarm optimization: Limitations & future directions", Int. J. Comput. Sci. Eng., 14(1), 196-200.
  3. Begambre, O. and Laier, J.E. (2009), "A hybrid particle swarm optimization-simplex algorithm (PSOS) for structural damage identification", Adv. Eng. Softw., 40(9), 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004.
  4. Bernal, D. (2002), "Load vectors for damage localization", J. Eng. Mech., 128(1), 7-14. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(7).
  5. Bicanic, N. and Chen, H.P. (1997), "Damage identification in framed structures using natural frequencies", Int. J. Numer. Meth. Eng., 40(23), 4451-4468. https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4451::AID-NME269>3.0.CO;2-L.
  6. Carvalho, J., Datta, B.N., Gupta, A. and Lagadapati, M. (2007), "A direct method for model updating with incomplete measured data and without spurious modes", Mech. Syst. Sign.l Proc., 21(7), 2715-2731. https://doi.org/10.1016/j.ymssp.2007.03.001.
  7. CSI (2013), SAP, CSI, Computers and Structures Inc., Berkeley, California, U.S.A.
  8. Darwin, C. (1859), On the Origin of Species by Means of Natural Selection.
  9. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vibr. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  10. Dreo, J., Petrowski, A., Siarry, P. and Taillard, E. (2006), Metaheuristics for Hard Optimization: Methods and Case Studies, Springer Science & Business Media.
  11. Du, D.C., Vinh, H.H., Trung, V.D., Hong Quyen, N.T. and Trung, N.T. (2017), "Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function", Eng. Optim., 50(8), 1233-1251. https://doi.org/10.1080/0305215X.2017.1367392.
  12. Feng, M.Q., Kim, J.M. and Xue, H. (1998), "Identification of a dynamic system using ambient vibration measurements", J. Appl. Mech., 65(4), 1010-1021. https://10.1115/1.2791895.
  13. Feng, M.Q. and Zhang, R. (1997), "Wind-induced vibration characteristics of Nanjing TV tower", Int. J. Non-Lin. Mech., 32(4), 693-706. https://doi.org/10.1016/S0020-7462(96)00095-9.
  14. Fox, C. (1992). "The location of defects in structures-A comparison of the use of natural frequency and mode shape data", Proceedings of the 10th International Modal Analysis Conference, San Diego, California, U.S.A., February.
  15. Friswell, M. and Mottershead, J.E. (2013), Finite Element Model Updating in Structural Dynamics, Springer Science & Business Media.
  16. Gentile, C. (2006), "Modal and structural identification of a RC arch bridge", Struct. Eng. Mech., 22(1), 53-70. https://10.12989/sem.2006.22.1.053.
  17. Hemamalini, S. and Simon, S.P. (2011), "Dynamic economic dispatch using artificial bee colony algorithm for units with valve-point effect", Int. Trans. Electr. Energy Syst., 21(1), 70-81. https://doi.org/10.1002/etep.413.
  18. Holland, J.H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press.
  19. Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vibr., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006.
  20. Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm", J. Glob. Optim., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x.
  21. Karaboga, D. and Basturk, B. (2008), "On the performance of artificial bee colony (ABC) algorithm", Appl. Soft Comput., 8(1), 687-697. https://doi.org/10.1016/j.asoc.2007.05.007.
  22. Kennedy, J. (2011), Particle Swarm Optimization, Springer.
  23. Lam, H.F. and Yin, T. (2011), "Dynamic reduction-based structural damage detection of transmission towers: Practical issues and experimental verification", Eng. Struct.s, 33(5), 1459-1478. https://doi.org/10.1016/j.engstruct.2011.01.009.
  24. Liu, Y., Sun, H. and Wang, D. (2013), "Updating the Finite Element Model of large-scaled structures using component mode synthesis technique", Intell. Automat. Soft Comput., 19(1), 11-21. https://doi.org/10.1080/10798587.2013.771457.
  25. Lu, Z., Zhu, J. and Ou, Y. (2017), "Structural damage identification using incomplete static displacement measurement", Struct. Eng. Mech., 63(2), 251-257. https://doi.org/10.12989/SEM.2017.63.2.251
  26. Maeck, J., Abdel Wahab, M. and De Roeck, G. (1999). "Damage detection in reinforced concrete structures by dynamic system identification", Proceedings of the International Seminar on Modal Analysis.
  27. Marwala, T. (2010), Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer Science & Business Media.
  28. Perera, R. and Torres, R. (2006), "Structural damage detection via modal data with genetic algorithms", J. Struct. Eng., 132(9), 1491-1501. https://doi.org/10.1061/(ASCE)0733- 9445(2006)132:9(1491).
  29. Petrovic-Kotur, S.P. and Pavic, A.P. (2016), "Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building", Struct. Eng. Mech., 58(2), 277-300. https://doi.org/10.12989/sem.2016.58.2.277.
  30. Rahbari, R., Niu, J., Brownjohn, J. and Koo, K.Y. (2015), "Structural identification of Humber bridge for performance prognosis", Smart Struct. Syst., 33(5), 1459-1478. http://dx.doi.org/10.12989/sss.2015.15.3.665.
  31. Ren, W.X. and De Roeck, G. (2002), "Structural damage identification using modal data. I: Simulation verification", J. Struct. Eng., 128(1), 87-95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87).
  32. Ren, W.X. and De Roeck, G. (2002), "Structural damage identification using modal data. II: Test verification", J. Struct. Eng., 128(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96).
  33. Reynders, E. and De Roeck, G. (2010), "A local flexibility method for vibration-based damage localization and quantification", J. Sound Vibr., 329(12), 2367-2383. https://doi.org/10.1016/j.jsv.2009.04.026.
  34. Reynders, E., Teughels, A. and De Roeck, G. (2010), "Finite element model updating and structural damage identification using OMAX data", Mech. Syst. Sign. Proc., 24(5), 1306-1323. https://doi.org/10.1016/j.ymssp.2010.03.014.
  35. Saada, M.M., Arafa, M.H. and Nassef, A.O. (2013), "Finite element model updating approach to damage identification in beams using particle swarm optimization", Eng. Optim., 45(6), 677-696. https://doi.org/10.1080/0305215X.2012.704026.
  36. Salawu, O. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  37. Salawu, O.S. and Williams, C. (1995), "Bridge assessment using forced-vibration testing", J. Struct. Eng., 121(2), 161-173. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(161).
  38. Shi, Z., Law, S. and Zhang, L. (2002), "Improved damage quantification from elemental modal strain energy change", J. Eng. Mech., 128(5), 521-529. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(521).
  39. Tang, J., Li, L. and Wu, C. (1995), Report on Field Measurement of Nanjing TV Tower, Technical Report of Southeast University, China.
  40. Teughels, A. and De Roeck, G. (2004), "Structural damage identification of the highway bridge Z24 by FE model updating", J. Sound Vibr., 278(3), 589-610. https://doi.org/10.1016/j.jsv.2003.10.041.
  41. Teughels, A., Maeck, J. and De Roeck, G. (2002), "Damage assessment by FE model updating using damage functions", Comput. Struct., 80(25), 1869-1879. https://doi.org/10.1016/S0045-7949(02)00217-1.
  42. the MathWorks, I. (2014), Matlab Release 2014a, The MathWorks, Inc., Natick, Massachusetts, U.S.A.
  43. Titurus, B. and Friswell, M.I. (2014), "Damage detection using successive parameter subset selections and multiple modal residuals", Mech. Syst. Sign. Proc., 45(1), 193-206. https://doi.org/10.1016/j.ymssp.2013.10.002.
  44. Wahab, M.A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: Application to a real damage scenario", J. Sound Vibr., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295.
  45. Wang, S., Zhang, M. and Liu, F. (2013), "Estimation of semi-rigid joints by cross modal strain energy method", Struct. Eng. Mech., 47(6), 757-771. https://doi.org/10.12989/sem.2013.47.6.757
  46. Wei, J. and Lv, Z. (2015), "Structural damage detection including the temperature difference based on response sensitivity analysis", Struct. Eng. Mech., 53(2), 249-260. http://dx.doi.org/10.12989/sem.2015.53.2.249.
  47. Wu, J. and Li, Q. (2004), "Finite element model updating for a high-rise structure based on ambient vibration measurements", Eng. Struct., 26(7), 979-990. https://doi.org/10.1016/j.engstruct.2004.03.002.
  48. Zhang, Z., Shankar, K., Morozov, E.V. and Tahtali, M. (2016), "Vibration-based delamination detection in composite beams through frequency changes", J. Vibr. Contr., 22(2), 496-512. https://doi.org/10.1177/1077546314533584.
  49. Zhu, J., Li, H., Lu, Z. and Liu, J. (2015), "A two-step approach for structural damage localization and quantification using Static and dynamic response data", Adv. Struct. Engi., 18(9), 1415-1425. https://doi.org/10.1260/1369-4332.18.9.1415.

Cited by

  1. Output-only structural parameter identification with evolutionary algorithms and correlation functions vol.29, pp.3, 2020, https://doi.org/10.1088/1361-665x/ab6ce9
  2. Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model vol.74, pp.2, 2019, https://doi.org/10.12989/sem.2020.74.2.157
  3. Markov Chain Monte Carlo-based Bayesian method for nonlinear stochastic model updating vol.520, 2019, https://doi.org/10.1016/j.jsv.2021.116595